refactored the compute image

master
mitchellhansen 6 years ago
parent a8679459ea
commit a91e071909

@ -43,6 +43,10 @@ use crate::vkprocessor::compute_kernel::ComputeKernel;
mod shader_kernels;
use crate::vkprocessor::shader_kernels::ShaderKernels;
mod compute_image;
use crate::vkprocessor::compute_image::ComputeImage;
use vulkano::descriptor::descriptor::DescriptorDesc;
//
@ -80,18 +84,6 @@ use vulkano::descriptor::descriptor::DescriptorDesc;
#[derive(Default, Debug, Clone)]
struct tVertex { position: [f32; 2] }
@ -174,11 +166,15 @@ pub struct VkProcessor<'a> {
pub xy: (u32, u32),
pub render_pass: Option<Arc<RenderPassAbstract + Send + Sync>>,
pub vertex_buffer: Option<Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync + 'static)>>,
pub vertex_buffer2: Option<Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync + 'static)>>,
pub dynamic_state: DynamicState,
pub graphics_image_swap_buffer: Option<std::sync::Arc<vulkano::image::attachment::AttachmentImage>>,
pub graphics_image_swap_buffer: Option<Arc<AttachmentImage>>,
pub textures: Vec<Arc<ImmutableImage<Format>>>,
pub image_buffer_store : Vec<Box<ImageAccess + Send + Sync>>,
pub compute_image: Option<ComputeImage>,
// pub image_buffers_obj : ImageBuffers,
}
@ -224,12 +220,16 @@ impl<'a> VkProcessor<'a> {
settings_buffer: Option::None,
xy: (0, 0),
render_pass: Option::None,
vertex_buffer: Option::None,
vertex_buffer2: None,
dynamic_state: DynamicState { line_width: None, viewports: None, scissors: None },
graphics_image_swap_buffer: None,
textures: vec![],
image_buffer_store: vec![],
//image_buffers_obj: ImageBuffers::new(),
compute_image: None
}
}
@ -253,15 +253,63 @@ impl<'a> VkProcessor<'a> {
self.shader_kernels = Some(self.shader_kernels.take().unwrap().recreate_swapchain(surface));
}
fn get_texture_from_file(image_filename: String, queue: Arc<Queue>) -> Arc<ImmutableImage<Format>> {
let project_root =
std::env::current_dir()
.expect("failed to get root directory");
let mut compute_path = project_root.clone();
compute_path.push(PathBuf::from("resources/images/"));
compute_path.push(PathBuf::from(image_filename));
let img = image::open(compute_path).expect("Couldn't find image");
let xy = img.dimensions();
let data_length = xy.0 * xy.1 * 4;
let pixel_count = img.raw_pixels().len();
let mut image_buffer = Vec::new();
if pixel_count != data_length as usize {
println!("Creating apha channel...");
for i in img.raw_pixels().iter() {
if (image_buffer.len() + 1) % 4 == 0 {
image_buffer.push(255);
}
image_buffer.push(*i);
}
image_buffer.push(255);
} else {
image_buffer = img.raw_pixels();
}
let (texture, tex_future) = ImmutableImage::from_iter(
image_buffer.iter().cloned(),
Dimensions::Dim2d { width: xy.0, height: xy.1 },
Format::R8G8B8A8Srgb,
queue.clone()
).unwrap();
texture
}
pub fn load_compute_image(&mut self, image_filename: String) {
self.compute_image = Some(ComputeImage::new(self.device.clone(), image_filename.clone()));
}
pub fn load_buffers(&mut self, image_filename: String)
{
self.load_compute_image(image_filename.clone());
let project_root =
std::env::current_dir()
.expect("failed to get root directory");
let mut compute_path = project_root.clone();
compute_path.push(PathBuf::from("resources/images/"));
compute_path.push(PathBuf::from(image_filename));
compute_path.push(PathBuf::from(image_filename.clone()));
let img = image::open(compute_path).expect("Couldn't find image");
@ -343,18 +391,20 @@ impl<'a> VkProcessor<'a> {
].iter().cloned()).unwrap()
};
self.vertex_buffer = Some(vertex_buffer);
let vertex_buffer2 = {
let (texture, tex_future) = {
ImmutableImage::from_iter(
self.image_buffer.iter().cloned(),
Dimensions::Dim2d { width: self.xy.0, height: self.xy.1 },
Format::R8G8B8A8Srgb,
self.queue.clone()
).unwrap()
CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), [
tVertex { position: [-1.0, -1.0 ] },
tVertex { position: [-1.0, -0.5 ] },
tVertex { position: [-0.5, 0.5 ] },
tVertex { position: [-0.5, -1.0 ] },
].iter().cloned()).unwrap()
};
self.vertex_buffer = Some(vertex_buffer);
self.vertex_buffer2 = Some(vertex_buffer2);
let compute_transfer_image = {
let mut usage = ImageUsage::none();
@ -368,13 +418,15 @@ impl<'a> VkProcessor<'a> {
usage)
};
self.image_buffer_store.push(Box::new(texture.clone()));
self.graphics_image_buffer = Some(texture.clone());
self.graphics_image_swap_buffer = Some(compute_transfer_image.clone().unwrap());
}
let texture = VkProcessor::get_texture_from_file(image_filename.clone(), self.queue.clone());
self.textures.push(texture);
}
// The image set is the containing object for all texture and image hooks.
@ -385,18 +437,12 @@ impl<'a> VkProcessor<'a> {
MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat,
SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap();
let mut descriptor_sets = PersistentDescriptorSet::start(
self.shader_kernels.clone().unwrap().graphics_pipeline.clone().unwrap().clone(), 0
);
let descriptor_sets = descriptor_sets.add_sampled_image(self.graphics_image_buffer.clone().unwrap().clone(), sampler.clone()).unwrap();
let o : Box<DescriptorSet + Send + Sync> = Box::new(
PersistentDescriptorSet::start(
self.shader_kernels.clone().unwrap().graphics_pipeline.clone().unwrap().clone(), 0
)
.add_sampled_image(self.graphics_image_buffer.clone().unwrap().clone(), sampler.clone()).unwrap()
.add_image(self.graphics_image_swap_buffer.clone().unwrap().clone()).unwrap()
.add_sampled_image(self.textures.get(0).unwrap().clone(), sampler.clone()).unwrap()
.add_image(self.compute_image.clone().unwrap().clone().get_swap_buffer().clone()).unwrap()
.build().unwrap());
o
}
@ -452,16 +498,22 @@ impl<'a> VkProcessor<'a> {
let mut v = Vec::new();
v.push(self.vertex_buffer.clone().unwrap().clone());
let mut v2 = Vec::new();
v2.push(self.vertex_buffer2.clone().unwrap().clone());
let command_buffer =
AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(), self.queue.family())
.unwrap()
.dispatch([self.xy.0, self.xy.1, 1],
self.compute_pipeline.clone().unwrap().clone(),
self.compute_set.clone().unwrap().clone(), ()).unwrap()
self.compute_image.clone().unwrap().clone().get_descriptor_set(self.compute_pipeline.clone().unwrap().clone()).clone(), ()).unwrap()
//self.compute_set.clone().unwrap().clone(), ()).unwrap()
.copy_buffer_to_image(self.compute_image.clone().unwrap().clone().rw_buffers.get(0).unwrap().clone(),
self.compute_image.clone().unwrap().clone().get_swap_buffer().clone()).unwrap()
.copy_buffer_to_image(self.compute_image_buffers.get(0).unwrap().clone(),
self.graphics_image_swap_buffer.clone().unwrap()).unwrap()
.begin_render_pass(framebuffers[image_num].clone(), false, clear_values)
.unwrap()
@ -470,21 +522,16 @@ impl<'a> VkProcessor<'a> {
vec![self.get_image_set()], ())
.unwrap()
// .draw(self.shader_kernels.clone().unwrap().graphics_pipeline.clone().unwrap().clone(),
// &self.dynamic_state.clone(), v2,
// vec![self.get_image_set()], ())
// .unwrap()
.end_render_pass()
.unwrap()
.build().unwrap();
let mut data_buffer_content = self.compute_image_buffers.get(0).unwrap().read().unwrap();
let img = ImageBuffer::from_fn(self.xy.0, self.xy.1, |x, y| {
let r = data_buffer_content[((self.xy.0 * y + x) * 4 + 0) as usize] as u8;
let g = data_buffer_content[((self.xy.0 * y + x) * 4 + 1) as usize] as u8;
let b = data_buffer_content[((self.xy.0 * y + x) * 4 + 2) as usize] as u8;
let a = data_buffer_content[((self.xy.0 * y + x) * 4 + 3) as usize] as u8;
image::Rgba([r, g, b, a])
});
// Wait on the previous frame, then execute the command buffer and present the image
let future = frame_future.join(acquire_future)
.then_execute(self.queue.clone(), command_buffer).unwrap()

@ -0,0 +1,184 @@
use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, DeviceLocalBuffer, ImmutableBuffer, BufferAccess};
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
use vulkano::descriptor::descriptor_set::{PersistentDescriptorSet, StdDescriptorPoolAlloc};
use vulkano::device::{Device, DeviceExtensions, QueuesIter, Queue};
use vulkano::instance::{Instance, InstanceExtensions, PhysicalDevice, QueueFamily};
use vulkano::pipeline::{ComputePipeline, GraphicsPipeline, GraphicsPipelineAbstract, GraphicsPipelineBuilder};
use vulkano::sync::{GpuFuture, FlushError};
use vulkano::sync;
use std::time::SystemTime;
use std::sync::Arc;
use std::ffi::CStr;
use std::path::PathBuf;
use shade_runner as sr;
use image::{DynamicImage, ImageBuffer};
use image::GenericImageView;
use vulkano::descriptor::pipeline_layout::PipelineLayout;
use image::GenericImage;
use shade_runner::{ComputeLayout, CompileError, FragLayout, FragInput, FragOutput, VertInput, VertOutput, VertLayout, CompiledShaders, Entry};
use vulkano::descriptor::descriptor_set::{PersistentDescriptorSetBuf, PersistentDescriptorSetImg, PersistentDescriptorSetSampler};
use shaderc::CompileOptions;
use vulkano::framebuffer::{Subpass, RenderPass, RenderPassAbstract, Framebuffer, FramebufferAbstract};
use vulkano::pipeline::shader::{GraphicsShaderType, ShaderModule, GraphicsEntryPoint, SpecializationConstants, SpecializationMapEntry};
use vulkano::swapchain::{Swapchain, PresentMode, SurfaceTransform, Surface, SwapchainCreationError, AcquireError};
use vulkano::swapchain::acquire_next_image;
use vulkano::image::swapchain::SwapchainImage;
use winit::{EventsLoop, WindowBuilder, Window, Event, WindowEvent};
use vulkano_win::VkSurfaceBuild;
use vulkano::pipeline::vertex::{SingleBufferDefinition, Vertex};
use vulkano::descriptor::PipelineLayoutAbstract;
use std::alloc::Layout;
use vulkano::pipeline::viewport::Viewport;
use image::ImageFormat;
use vulkano::image::immutable::ImmutableImage;
use vulkano::image::attachment::AttachmentImage;
use vulkano::image::{Dimensions, ImageUsage};
use vulkano::format::Format;
use vulkano::sampler::{Sampler, Filter, MipmapMode, SamplerAddressMode};
use image::flat::NormalForm::ColumnMajorPacked;
use image::Rgba;
use crate::vkprocessor::SimpleSpecializationConstants;
#[derive(Default, Debug, Clone)]
struct tVertex { position: [f32; 2] }
#[derive(Clone)]
pub struct ComputeImage {
device: Arc<Device>,
compute_graphics_swap_buffer: std::sync::Arc<vulkano::image::attachment::AttachmentImage>,
image_buffer: Vec<u8>,
xy: (u32, u32),
pub rw_buffers: Vec<Arc<CpuAccessibleBuffer<[u8]>>>,
pub settings_buffer: Arc<CpuAccessibleBuffer<[u32]>>,
}
impl ComputeImage {
fn load_raw(filename: String) -> (Vec<u8>, (u32,u32)) {
let project_root =
std::env::current_dir()
.expect("failed to get root directory");
let mut compute_path = project_root.clone();
compute_path.push(PathBuf::from("resources/images/"));
compute_path.push(PathBuf::from(filename.clone()));
let img = image::open(compute_path).expect("Couldn't find image");
let xy = img.dimensions();
let data_length = xy.0 * xy.1 * 4;
let pixel_count = img.raw_pixels().len();
let mut image_buffer = Vec::new();
if pixel_count != data_length as usize {
println!("Creating apha channel...");
for i in img.raw_pixels().iter() {
if (image_buffer.len() + 1) % 4 == 0 {
image_buffer.push(255);
}
image_buffer.push(*i);
}
image_buffer.push(255);
} else {
image_buffer = img.raw_pixels();
}
(image_buffer, xy)
}
pub fn new(device: Arc<Device>, image_filename: String) -> ComputeImage {
let (image_buffer, xy) = ComputeImage::load_raw(image_filename);
let compute_graphics_swap_buffer = {
let mut usage = ImageUsage::none();
usage.transfer_destination = true;
usage.storage = true;
AttachmentImage::with_usage(
device.clone(),
[xy.0, xy.1],
Format::R8G8B8A8Uint,
usage)
};
let data_length = xy.0 * xy.1 * 4;
// Pull out the image data and place it in a buffer for the kernel to write to and for us to read from
let write_buffer = {
let mut buff = image_buffer.iter();
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap()
};
// Pull out the image data and place it in a buffer for the kernel to read from
let read_buffer = {
let mut buff = image_buffer.iter();
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap()
};
// A buffer to hold many i32 values to use as settings
let settings_buffer = {
let vec = vec![xy.0, xy.1];
let mut buff = vec.iter();
let data_iter =
(0..2).map(|n| *(buff.next().unwrap()));
CpuAccessibleBuffer::from_iter(device.clone(),
BufferUsage::all(),
data_iter).unwrap()
};
ComputeImage{
device: device.clone(),
compute_graphics_swap_buffer: compute_graphics_swap_buffer.unwrap(),
image_buffer: image_buffer,
xy: (0, 0),
rw_buffers: vec![write_buffer, read_buffer],
settings_buffer: settings_buffer
}
}
pub fn get_swap_buffer(&mut self) -> Arc<AttachmentImage> {
self.compute_graphics_swap_buffer.clone()
}
pub fn read_read_buffer(&mut self) -> ImageBuffer<Rgba<u8>, Vec<u8>>{
let data_buffer_content = self.rw_buffers.get(0).unwrap().read().unwrap();
ImageBuffer::from_fn(self.xy.0, self.xy.1, |x, y| {
let r = data_buffer_content[((self.xy.0 * y + x) * 4 + 0) as usize] as u8;
let g = data_buffer_content[((self.xy.0 * y + x) * 4 + 1) as usize] as u8;
let b = data_buffer_content[((self.xy.0 * y + x) * 4 + 2) as usize] as u8;
let a = data_buffer_content[((self.xy.0 * y + x) * 4 + 3) as usize] as u8;
image::Rgba([r, g, b, a])
})
}
pub fn get_descriptor_set(&self, compute_pipeline: std::sync::Arc<ComputePipeline<PipelineLayout<shade_runner::layouts::ComputeLayout>>>)
-> Arc<PersistentDescriptorSet<std::sync::Arc<ComputePipeline<PipelineLayout<shade_runner::layouts::ComputeLayout>>>, ((((),
PersistentDescriptorSetBuf<std::sync::Arc<vulkano::buffer::cpu_access::CpuAccessibleBuffer<[u8]>>>),
PersistentDescriptorSetBuf<std::sync::Arc<vulkano::buffer::cpu_access::CpuAccessibleBuffer<[u8]>>>),
PersistentDescriptorSetBuf<std::sync::Arc<vulkano::buffer::cpu_access::CpuAccessibleBuffer<[u32]>>>)>> {
Arc::new(PersistentDescriptorSet::start(compute_pipeline.clone(), 0)
.add_buffer(self.rw_buffers.get(0).unwrap().clone()).unwrap()
.add_buffer(self.rw_buffers.get(1).unwrap().clone()).unwrap()
.add_buffer(self.settings_buffer.clone()).unwrap()
.build().unwrap())
}
}

@ -56,7 +56,7 @@ pub struct ShaderKernels {
pub swapchain_images: Vec<Arc<SwapchainImage<Window>>>, // Surface which is drawn to
//pub physical: PhysicalDevice<'a>,
// shader: CompiledShaders,
//shader: CompiledShaders,
//options: CompileOptions<'a>,
@ -65,7 +65,7 @@ pub struct ShaderKernels {
device: Arc<Device>,
// entry_point: EntryPoint<'a>,
// entry_point: EntryPoint<'a>,
}
// return the frame buffers

Loading…
Cancel
Save