use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, DeviceLocalBuffer, ImmutableBuffer, BufferAccess}; use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState}; use vulkano::descriptor::descriptor_set::{PersistentDescriptorSet, StdDescriptorPoolAlloc, PersistentDescriptorSetBuilder, FixedSizeDescriptorSetsPool, StdDescriptorPool}; use vulkano::descriptor::descriptor_set::collection::DescriptorSetsCollection; use vulkano::device::{Device, DeviceExtensions, QueuesIter, Queue}; use vulkano::instance::{Instance, InstanceExtensions, PhysicalDevice, QueueFamily}; use vulkano::pipeline::{ComputePipeline, GraphicsPipeline, GraphicsPipelineAbstract}; use vulkano::sync::{GpuFuture, FlushError}; use vulkano::sync; use std::time::SystemTime; use std::sync::Arc; use std::ffi::CStr; use std::path::PathBuf; use shade_runner as sr; use image::{DynamicImage, ImageBuffer}; use image::GenericImageView; use vulkano::descriptor::pipeline_layout::PipelineLayout; use image::GenericImage; use shade_runner::{ComputeLayout, CompileError, FragLayout, FragInput, FragOutput, VertInput, VertOutput, VertLayout, CompiledShaders, Entry}; use vulkano::descriptor::descriptor_set::{PersistentDescriptorSetBuf, PersistentDescriptorSetImg, PersistentDescriptorSetSampler}; use shaderc::CompileOptions; use vulkano::framebuffer::{Subpass, RenderPass, RenderPassAbstract, Framebuffer, FramebufferAbstract}; use vulkano::pipeline::shader::{GraphicsShaderType, ShaderModule, GraphicsEntryPoint, SpecializationConstants, SpecializationMapEntry}; use vulkano::swapchain::{Swapchain, PresentMode, SurfaceTransform, Surface, SwapchainCreationError, AcquireError}; use vulkano::swapchain::acquire_next_image; use vulkano::image::swapchain::SwapchainImage; use winit::{EventsLoop, WindowBuilder, Window, Event, WindowEvent}; use vulkano_win::VkSurfaceBuild; use vulkano::pipeline::vertex::{SingleBufferDefinition, Vertex}; use vulkano::descriptor::{PipelineLayoutAbstract, DescriptorSet}; use std::alloc::Layout; use vulkano::pipeline::viewport::Viewport; use image::ImageFormat; use vulkano::image::immutable::ImmutableImage; use vulkano::image::attachment::AttachmentImage; use vulkano::image::{Dimensions, ImageUsage, ImageAccess, ImageDimensions}; use vulkano::format::Format; use vulkano::sampler::{Sampler, Filter, MipmapMode, SamplerAddressMode}; use image::flat::NormalForm::ColumnMajorPacked; mod compute_kernel; use crate::vkprocessor::compute_kernel::ComputeKernel; mod shader_kernels; use crate::vkprocessor::shader_kernels::ShaderKernels; mod compute_image; use crate::vkprocessor::compute_image::ComputeImage; use vulkano::descriptor::descriptor::DescriptorDesc; use crate::vertex_2d::ColoredVertex2D; /// This method is called once during initialization, then again whenever the window is resized fn window_size_dependent_setup( images: &[Arc>], render_pass: Arc, dynamic_state: &mut DynamicState, ) -> Vec> { let dimensions = images[0].dimensions(); let viewport = Viewport { origin: [0.0, 0.0], dimensions: [dimensions.width() as f32, dimensions.height() as f32], depth_range: 0.0..1.0, }; dynamic_state.viewports = Some(vec!(viewport)); images.iter().map(|image| { Arc::new( Framebuffer::start(render_pass.clone()) .add(image.clone()).unwrap() .build().unwrap() ) as Arc }).collect::>() } #[repr(C)] #[derive(Default, Debug, Clone)] struct SimpleSpecializationConstants { first_constant: i32, second_constant: u32, third_constant: f32, } unsafe impl SpecializationConstants for SimpleSpecializationConstants { fn descriptors() -> &'static [SpecializationMapEntry] { static DESCRIPTORS: [SpecializationMapEntry; 3] = [ SpecializationMapEntry { constant_id: 0, offset: 0, size: 4, }, SpecializationMapEntry { constant_id: 1, offset: 4, size: 4, }, SpecializationMapEntry { constant_id: 2, offset: 8, size: 4, }, ]; &DESCRIPTORS } } pub struct VkProcessor<'a> { pub shader_kernels: Option, pub compute_kernel: Option, pub vertex_shader_path: PathBuf, pub fragment_shader_path: PathBuf, pub instance: Arc, pub physical: PhysicalDevice<'a>, pub graphics_pipeline: Option>, pub compute_pipeline: Option>>>, pub device: Arc, pub queues: QueuesIter, pub queue: Arc, pub compute_set: Option>>, ((((), PersistentDescriptorSetBuf>>), PersistentDescriptorSetBuf>>), PersistentDescriptorSetBuf>>)>>>, pub img_set: Option, ((((), PersistentDescriptorSetImg>>), PersistentDescriptorSetSampler), PersistentDescriptorSetImg>)>>>, pub graphics_image_buffer: Option>>, pub image_buffer: Vec, pub compute_image_buffers: Vec>>, pub settings_buffer: Option>>, // pub swapchain: Option>>, // pub images: Option>>>, pub xy: (u32, u32), pub render_pass: Option>, pub vertex_buffer: Option>, pub vertex_buffer2: Option>, pub dynamic_state: DynamicState, pub graphics_image_swap_buffer: Option>, pub textures: Vec>>, pub image_buffer_store : Vec>, pub compute_image: Option, // pub image_buffers_obj : ImageBuffers, } impl<'a> VkProcessor<'a> { pub fn new(instance: &'a Arc, surface: &'a Arc>) -> VkProcessor<'a> { let physical = PhysicalDevice::enumerate(instance).next().unwrap(); let queue_family = physical.queue_families().find(|&q| { // We take the first queue that supports drawing to our window. q.supports_graphics() && surface.is_supported(q).unwrap_or(false) && q.supports_compute() }).unwrap(); let device_ext = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::none() }; let (device, mut queues) = Device::new(physical, physical.supported_features(), &device_ext, [(queue_family, 0.5)].iter().cloned()).unwrap(); let queue = queues.next().unwrap(); VkProcessor { shader_kernels: Option::None, compute_kernel: Option::None, vertex_shader_path: Default::default(), fragment_shader_path: Default::default(), instance: instance.clone(), physical: physical.clone(), graphics_pipeline: Option::None, compute_pipeline: Option::None, device: device.clone(), queue: queue, queues: queues, compute_set: Option::None, img_set: Option::None, graphics_image_buffer: None, image_buffer: Vec::new(), compute_image_buffers: Vec::new(), settings_buffer: Option::None, xy: (0, 0), render_pass: Option::None, vertex_buffer: Option::None, vertex_buffer2: None, dynamic_state: DynamicState { line_width: None, viewports: None, scissors: None }, graphics_image_swap_buffer: None, textures: vec![], image_buffer_store: vec![], compute_image: None } } pub fn compile_kernel(&mut self, filename: String) { self.compute_kernel = Some(ComputeKernel::new(filename, self.device.clone())); self.compute_pipeline = Some(self.compute_kernel.clone().unwrap().get_pipeline()); } pub fn compile_shaders(&mut self, filename: String, surface: &'a Arc>) { self.shader_kernels = Some( ShaderKernels::new(filename.clone(), surface, self.queue.clone(), self.physical, self.device.clone()) ); } // On resizes we have to recreate the swapchain pub fn recreate_swapchain(&mut self, surface: &'a Arc>) { self.shader_kernels = Some(self.shader_kernels.take().unwrap().recreate_swapchain(surface)); } fn get_texture_from_file(image_filename: String, queue: Arc) -> Arc> { let project_root = std::env::current_dir() .expect("failed to get root directory"); let mut compute_path = project_root.clone(); compute_path.push(PathBuf::from("resources/images/")); compute_path.push(PathBuf::from(image_filename)); let img = image::open(compute_path).expect("Couldn't find image"); let xy = img.dimensions(); let data_length = xy.0 * xy.1 * 4; let pixel_count = img.raw_pixels().len(); let mut image_buffer = Vec::new(); if pixel_count != data_length as usize { println!("Creating apha channel..."); for i in img.raw_pixels().iter() { if (image_buffer.len() + 1) % 4 == 0 { image_buffer.push(255); } image_buffer.push(*i); } image_buffer.push(255); } else { image_buffer = img.raw_pixels(); } let (texture, tex_future) = ImmutableImage::from_iter( image_buffer.iter().cloned(), Dimensions::Dim2d { width: xy.0, height: xy.1 }, Format::R8G8B8A8Srgb, queue.clone() ).unwrap(); texture } pub fn load_compute_image(&mut self, image_filename: String) { self.compute_image = Some(ComputeImage::new(self.device.clone(), image_filename.clone())); } pub fn load_buffers(&mut self, image_filename: String) { self.load_compute_image(image_filename.clone()); let project_root = std::env::current_dir() .expect("failed to get root directory"); let mut compute_path = project_root.clone(); compute_path.push(PathBuf::from("resources/images/")); compute_path.push(PathBuf::from(image_filename.clone())); let img = image::open(compute_path).expect("Couldn't find image"); self.xy = img.dimensions(); let data_length = self.xy.0 * self.xy.1 * 4; let pixel_count = img.raw_pixels().len(); println!("Pixel count {}", pixel_count); if pixel_count != data_length as usize { println!("Creating apha channel..."); for i in img.raw_pixels().iter() { if (self.image_buffer.len() + 1) % 4 == 0 { self.image_buffer.push(255); } self.image_buffer.push(*i); } self.image_buffer.push(255); } else { self.image_buffer = img.raw_pixels(); } println!("Buffer length {}", self.image_buffer.len()); println!("Size {:?}", self.xy); println!("Allocating Buffers..."); let color = [0.,0.,0.,0.]; let vertex_buffer = { CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), [ ColoredVertex2D { position: [ 1.0, 1.0 ], color }, ColoredVertex2D { position: [ 1.0, 0.5 ], color }, ColoredVertex2D { position: [ 0.5, 0.5 ], color }, ColoredVertex2D { position: [ 0.5, 1.0 ], color }, ].iter().cloned()).unwrap() }; let vertex_buffer2 = { CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), [ ColoredVertex2D { position: [-1.0, -1.0 ], color }, ColoredVertex2D { position: [-1.0, -0.5 ], color }, ColoredVertex2D { position: [-0.5, -0.5 ], color }, ColoredVertex2D { position: [-0.5, -1.0 ], color }, ].iter().cloned()).unwrap() }; self.vertex_buffer = Some(vertex_buffer); self.vertex_buffer2 = Some(vertex_buffer2); let texture = VkProcessor::get_texture_from_file(image_filename.clone(), self.queue.clone()); self.textures.push(texture); let texture1 = VkProcessor::get_texture_from_file(String::from("button.png"), self.queue.clone()); self.textures.push(texture1); } // The image set is the containing object for all texture and image hooks. fn get_image_set(&mut self) -> Box { let sampler = Sampler::new(self.device.clone(), Filter::Linear, Filter::Linear, MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap(); let o : Box = Box::new( PersistentDescriptorSet::start( self.shader_kernels.clone().unwrap().graphics_pipeline.clone().unwrap().clone(), 0 ) .add_sampled_image(self.textures.get(0).unwrap().clone(), sampler.clone()).unwrap() .add_image(self.compute_image.clone().unwrap().clone().get_swap_buffer().clone()).unwrap() .build().unwrap()); o } // The image set is the containing object for all texture and image hooks. fn get_gui_image_set(&mut self) -> Box { let sampler = Sampler::new(self.device.clone(), Filter::Linear, Filter::Linear, MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap(); let o : Box = Box::new( PersistentDescriptorSet::start( self.shader_kernels.clone().unwrap().graphics_pipeline.clone().unwrap().clone(), 0 ) .add_sampled_image(self.textures.get(1).unwrap().clone(), sampler.clone()).unwrap() .add_image(self.compute_image.clone().unwrap().clone().get_swap_buffer().clone()).unwrap() .build().unwrap()); o } pub fn save_edges_image(&mut self){ self.compute_image.clone().unwrap().clone().save_image(); } pub fn run(&mut self, surface: &'a Arc>, mut frame_future: Box) -> Box { let mut framebuffers = window_size_dependent_setup(&self.shader_kernels.clone().unwrap().swapchain_images.clone(), self.shader_kernels.clone().unwrap().render_pass.clone(), &mut self.dynamic_state); let mut recreate_swapchain = false; // The docs said to call this on each loop. frame_future.cleanup_finished(); // Whenever the window resizes we need to recreate everything dependent on the window size. // In this example that includes the swapchain, the framebuffers and the dynamic state viewport. if recreate_swapchain { self.shader_kernels = Some(self.shader_kernels.clone().unwrap().recreate_swapchain(surface)); framebuffers = window_size_dependent_setup(&self.shader_kernels.clone().unwrap().swapchain_images.clone(), self.shader_kernels.clone().unwrap().render_pass.clone(), //self.render_pass.clone().unwrap().clone(), &mut self.dynamic_state); recreate_swapchain = false; } // This function can block if no image is available. The parameter is an optional timeout // after which the function call will return an error. let (image_num, acquire_future) = match vulkano::swapchain::acquire_next_image(self.shader_kernels.clone().unwrap().swapchain.clone(), None) { Ok(r) => r, Err(AcquireError::OutOfDate) => { recreate_swapchain = true; //continue; panic!("Weird thing"); } Err(err) => panic!("{:?}", err) }; // Specify the color to clear the framebuffer with i.e. blue let clear_values = vec!([0.0, 0.0, 1.0, 1.0].into()); let mut v = Vec::new(); v.push(self.vertex_buffer.clone().unwrap().clone()); let mut v2 = Vec::new(); v2.push(self.vertex_buffer2.clone().unwrap().clone()); let command_buffer = AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(), self.queue.family()) .unwrap() .dispatch([self.xy.0, self.xy.1, 1], self.compute_pipeline.clone().unwrap().clone(), self.compute_image.clone().unwrap().clone().get_descriptor_set(self.compute_pipeline.clone().unwrap().clone()).clone(), ()).unwrap() //self.compute_set.clone().unwrap().clone(), ()).unwrap() .copy_buffer_to_image(self.compute_image.clone().unwrap().clone().rw_buffers.get(0).unwrap().clone(), self.compute_image.clone().unwrap().clone().get_swap_buffer().clone()).unwrap() .begin_render_pass(framebuffers[image_num].clone(), false, clear_values) .unwrap() .draw(self.shader_kernels.clone().unwrap().graphics_pipeline.clone().unwrap().clone(), &self.dynamic_state.clone(), v, vec![self.get_image_set()], ()) .unwrap() .draw(self.shader_kernels.clone().unwrap().graphics_pipeline.clone().unwrap().clone(), &self.dynamic_state.clone(), v2, vec![self.get_gui_image_set()], ()) .unwrap() .end_render_pass() .unwrap() .build().unwrap(); // Wait on the previous frame, then execute the command buffer and present the image let future = frame_future.join(acquire_future) .then_execute(self.queue.clone(), command_buffer).unwrap() .then_swapchain_present(self.queue.clone(), self.shader_kernels.clone().unwrap().swapchain.clone(), image_num) .then_signal_fence_and_flush(); match future { Ok(future) => { (Box::new(future) as Box<_>) } Err(FlushError::OutOfDate) => { recreate_swapchain = true; (Box::new(sync::now(self.device.clone())) as Box<_>) } Err(e) => { println!("{:?}", e); (Box::new(sync::now(self.device.clone())) as Box<_>) } } } }