use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, DeviceLocalBuffer, ImmutableBuffer, BufferAccess}; use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState}; use vulkano::descriptor::descriptor_set::{PersistentDescriptorSet, StdDescriptorPoolAlloc, PersistentDescriptorSetBuilder, FixedSizeDescriptorSetsPool, StdDescriptorPool}; use vulkano::descriptor::descriptor_set::collection::DescriptorSetsCollection; use vulkano::device::{Device, DeviceExtensions, QueuesIter, Queue}; use vulkano::instance::{Instance, InstanceExtensions, PhysicalDevice, QueueFamily}; use vulkano::pipeline::{ComputePipeline, GraphicsPipeline, GraphicsPipelineAbstract}; use vulkano::sync::{GpuFuture, FlushError}; use vulkano::sync; use std::time::SystemTime; use std::sync::Arc; use std::ffi::CStr; use std::path::PathBuf; use shade_runner as sr; use image::{DynamicImage, ImageBuffer}; use image::GenericImageView; use vulkano::descriptor::pipeline_layout::PipelineLayout; use image::GenericImage; use shade_runner::{ComputeLayout, CompileError, FragLayout, FragInput, FragOutput, VertInput, VertOutput, VertLayout, CompiledShaders, Entry}; use vulkano::descriptor::descriptor_set::{PersistentDescriptorSetBuf, PersistentDescriptorSetImg, PersistentDescriptorSetSampler}; use shaderc::CompileOptions; use vulkano::framebuffer::{Subpass, RenderPass, RenderPassAbstract, Framebuffer, FramebufferAbstract}; use vulkano::pipeline::shader::{GraphicsShaderType, ShaderModule, GraphicsEntryPoint, SpecializationConstants, SpecializationMapEntry}; use vulkano::swapchain::{Swapchain, PresentMode, SurfaceTransform, Surface, SwapchainCreationError, AcquireError, Capabilities}; use vulkano::swapchain::acquire_next_image; use vulkano::image::swapchain::SwapchainImage; use winit::{EventsLoop, WindowBuilder, Window, Event, WindowEvent}; use vulkano_win::VkSurfaceBuild; use vulkano::pipeline::vertex::{SingleBufferDefinition, Vertex}; use vulkano::descriptor::{PipelineLayoutAbstract, DescriptorSet}; use std::alloc::Layout; use vulkano::pipeline::viewport::Viewport; use image::ImageFormat; use vulkano::image::immutable::ImmutableImage; use vulkano::image::attachment::AttachmentImage; use vulkano::image::{Dimensions, ImageUsage, ImageAccess, ImageDimensions}; use vulkano::format::Format; use vulkano::format::ClearValue; use vulkano::sampler::{Sampler, Filter, MipmapMode, SamplerAddressMode}; use image::flat::NormalForm::ColumnMajorPacked; use crate::util::compute_kernel::ComputeKernel; use crate::util::shader_kernels::ShaderKernels; use crate::util::compute_image::ComputeImage; use vulkano::descriptor::descriptor::DescriptorDesc; use crate::vertex_2d::ColoredVertex2D; /// This method is called once during initialization, then again whenever the window is resized fn window_size_dependent_setup( images: &[Arc>], render_pass: Arc, dynamic_state: &mut DynamicState, ) -> Vec> { let dimensions = images[0].dimensions(); let viewport = Viewport { origin: [0.0, 0.0], dimensions: [dimensions.width() as f32, dimensions.height() as f32], depth_range: 0.0..1.0, }; dynamic_state.viewports = Some(vec!(viewport)); images.iter().map(|image| { Arc::new( Framebuffer::start(render_pass.clone()) .add(image.clone()).unwrap() .build().unwrap() ) as Arc }).collect::>() } pub struct VkProcessor<'a> { // Vulkan state fields pub instance: Arc, pub physical: PhysicalDevice<'a>, pub device: Arc, pub queues: QueuesIter, pub queue: Arc, pub dynamic_state: DynamicState, // TODO: This will need to handle multiple of each type pub shader_kernels: Option, pub compute_kernel: Option, // TODO: Move this into canvas pub vertex_buffer: Option>, pub vertex_buffer2: Option>, pub textures: Vec>>, pub compute_image: Option, pub swapchain: Option>>, pub swapchain_images: Option>>>, swapchain_recreate_needed: bool, capabilities: Capabilities } impl<'a> VkProcessor<'a> { pub fn new(instance: &'a Arc, surface: &'a Arc>) -> VkProcessor<'a> { let physical = PhysicalDevice::enumerate(instance).next().unwrap(); let queue_family = physical.queue_families().find(|&q| { // We take the first queue that supports drawing to our window. q.supports_graphics() && surface.is_supported(q).unwrap_or(false) && q.supports_compute() }).unwrap(); let device_ext = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::none() }; let (device, mut queues) = Device::new(physical, physical.supported_features(), &device_ext, [(queue_family, 0.5)].iter().cloned()).unwrap(); let queue = queues.next().unwrap(); VkProcessor { instance: instance.clone(), physical: physical.clone(), device: device.clone(), queue: queue, queues: queues, dynamic_state: DynamicState { line_width: None, viewports: None, scissors: None }, shader_kernels: None, compute_kernel: None, vertex_buffer: None, vertex_buffer2: None, textures: vec![], compute_image: None, swapchain: None, swapchain_images: None, swapchain_recreate_needed: false, capabilities: surface.capabilities(physical).unwrap() } } pub fn compile_kernel(&mut self, filename: String) { self.compute_kernel = Some(ComputeKernel::new(filename, self.device.clone())); } pub fn compile_shaders(&mut self, filename: String, surface: &'a Arc>) { self.shader_kernels = Some( ShaderKernels::new(filename.clone(), self.capabilities.clone(), self.queue.clone(), self.physical, self.device.clone()) ); } pub fn create_swapchain(&mut self, surface: &'a Arc>) { let (mut swapchain, images) = { let capabilities = surface.capabilities(self.physical).unwrap(); let usage = capabilities.supported_usage_flags; let alpha = capabilities.supported_composite_alpha.iter().next().unwrap(); // Choosing the internal format that the images will have. let format = capabilities.supported_formats[0].0; // Set the swapchains window dimensions let initial_dimensions = if let Some(dimensions) = surface.window().get_inner_size() { // convert to physical pixels let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into(); [dimensions.0, dimensions.1] } else { // The window no longer exists so exit the application. panic!("window closed"); }; Swapchain::new(self.device.clone(), surface.clone(), capabilities.min_image_count, // number of attachment images format, initial_dimensions, 1, // Layers usage, &self.queue, SurfaceTransform::Identity, alpha, PresentMode::Fifo, true, None).unwrap() }; self.swapchain = Some(swapchain); self.swapchain_images = Some(images); } // On resizes we have to recreate the swapchain pub fn recreate_swapchain(&mut self, surface: &'a Arc>) { let dimensions = if let Some(dimensions) = surface.window().get_inner_size() { let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into(); [dimensions.0, dimensions.1] } else { return; }; let (new_swapchain, new_images) = match self.swapchain.clone().unwrap().clone().recreate_with_dimension(dimensions) { Ok(r) => r, // This error tends to happen when the user is manually resizing the window. // Simply restarting the loop is the easiest way to fix this issue. Err(SwapchainCreationError::UnsupportedDimensions) => panic!("Uh oh"), Err(err) => panic!("{:?}", err) }; self.swapchain = Some(new_swapchain); self.swapchain_images = Some(new_images); } fn get_texture_from_file(image_filename: String, queue: Arc) -> Arc> { let project_root = std::env::current_dir() .expect("failed to get root directory"); let mut compute_path = project_root.clone(); compute_path.push(PathBuf::from("resources/images/")); compute_path.push(PathBuf::from(image_filename)); let img = image::open(compute_path).expect("Couldn't find image"); let xy = img.dimensions(); let data_length = xy.0 * xy.1 * 4; let pixel_count = img.raw_pixels().len(); let mut image_buffer = Vec::new(); if pixel_count != data_length as usize { println!("Creating apha channel..."); for i in img.raw_pixels().iter() { if (image_buffer.len() + 1) % 4 == 0 { image_buffer.push(255); } image_buffer.push(*i); } image_buffer.push(255); } else { image_buffer = img.raw_pixels(); } let (texture, tex_future) = ImmutableImage::from_iter( image_buffer.iter().cloned(), Dimensions::Dim2d { width: xy.0, height: xy.1 }, Format::R8G8B8A8Srgb, queue.clone() ).unwrap(); texture } pub fn load_compute_image(&mut self, image_filename: String) { self.compute_image = Some(ComputeImage::new(self.device.clone(), image_filename.clone())); } pub fn load_buffers(&mut self, image_filename: String) { self.load_compute_image(image_filename.clone()); let color = [1.,0.,0.,0.]; let vertex_buffer = { CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), [ ColoredVertex2D { position: [ 1.0, 1.0 ], color }, ColoredVertex2D { position: [ 1.0, 0.5 ], color }, ColoredVertex2D { position: [ 0.5, 0.5 ], color }, ColoredVertex2D { position: [ 0.5, 1.0 ], color }, ].iter().cloned()).unwrap() }; let vertex_buffer2 = { CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), [ ColoredVertex2D { position: [-1.0, -1.0 ], color }, ColoredVertex2D { position: [-1.0, -0.5 ], color }, ColoredVertex2D { position: [-0.5, -0.5 ], color }, ColoredVertex2D { position: [-0.5, -1.0 ], color }, ].iter().cloned()).unwrap() }; self.vertex_buffer = Some(vertex_buffer); self.vertex_buffer2 = Some(vertex_buffer2); let texture = VkProcessor::get_texture_from_file(image_filename.clone(), self.queue.clone()); self.textures.push(texture); let texture1 = VkProcessor::get_texture_from_file(String::from("button.png"), self.queue.clone()); self.textures.push(texture1); } // The image set is the containing object for all texture and image hooks. fn get_image_set(&mut self) -> Box { let sampler = Sampler::new(self.device.clone(), Filter::Linear, Filter::Linear, MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap(); let o : Box = Box::new( PersistentDescriptorSet::start( self.shader_kernels.clone().unwrap().get_pipeline(), 0 ) .add_sampled_image(self.textures.get(0).unwrap().clone(), sampler.clone()).unwrap() .add_image(self.compute_image.clone().unwrap().clone().get_swap_buffer().clone()).unwrap() .build().unwrap()); o } // The image set is the containing object for all texture and image hooks. fn get_gui_image_set(&mut self) -> Box { let sampler = Sampler::new(self.device.clone(), Filter::Linear, Filter::Linear, MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap(); let o : Box = Box::new( PersistentDescriptorSet::start( self.shader_kernels.clone().unwrap().get_pipeline(), 0 ) .add_sampled_image(self.textures.get(1).unwrap().clone(), sampler.clone()).unwrap() .add_image(self.compute_image.clone().unwrap().clone().get_swap_buffer().clone()).unwrap() .build().unwrap()); o } pub fn save_edges_image(&mut self){ self.compute_image.clone().unwrap().clone().save_image(); } pub fn run(&mut self, surface: &'a Arc>, mut frame_future: Box) -> Box { let mut framebuffers = window_size_dependent_setup(&self.swapchain_images.clone().unwrap().clone(), self.shader_kernels.clone().unwrap().render_pass.clone(), &mut self.dynamic_state); // The docs said to call this on each loop. frame_future.cleanup_finished(); // Whenever the window resizes we need to recreate everything dependent on the window size. // In this example that includes the swapchain, the framebuffers and the dynamic state viewport. if self.swapchain_recreate_needed { self.recreate_swapchain(surface); framebuffers = window_size_dependent_setup(&self.swapchain_images.clone().unwrap().clone(), self.shader_kernels.clone().unwrap().render_pass.clone(), &mut self.dynamic_state); self.swapchain_recreate_needed = false; } // This function can block if no image is available. The parameter is an optional timeout // after which the function call will return an error. let (image_num, acquire_future) = match vulkano::swapchain::acquire_next_image(self.swapchain.clone().unwrap().clone(), None) { Ok(r) => r, Err(AcquireError::OutOfDate) => { self.swapchain_recreate_needed = true; return Box::new(sync::now(self.device.clone())) as Box<_>; } Err(err) => panic!("{:?}", err) }; // Specify the color to clear the framebuffer with i.e. blue let clear_values = vec!(ClearValue::Float([0.0, 0.0, 1.0, 1.0])); let mut v = Vec::new(); v.push(self.vertex_buffer.clone().unwrap().clone()); let mut v2 = Vec::new(); v2.push(self.vertex_buffer2.clone().unwrap().clone()); let xy = self.compute_image.clone().unwrap().get_size(); let mut command_buffer = AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(), self.queue.family()) .unwrap() .dispatch([xy.0, xy.1, 1], self.compute_kernel.clone().unwrap().clone().get_pipeline(), self.compute_image.clone().unwrap().clone() .get_descriptor_set(self.compute_kernel.clone().unwrap().clone().get_pipeline()).clone(), ()).unwrap() .copy_buffer_to_image(self.compute_image.clone().unwrap().clone().rw_buffers.get(0).unwrap().clone(), self.compute_image.clone().unwrap().clone().get_swap_buffer().clone()).unwrap() .begin_render_pass(framebuffers[image_num].clone(), false, clear_values.clone()) .unwrap() .draw(self.shader_kernels.clone().unwrap().get_pipeline(), &self.dynamic_state.clone(), v, vec![self.get_image_set()], ()) .unwrap(); command_buffer = command_buffer.draw(self.shader_kernels.clone().unwrap().get_pipeline(), &self.dynamic_state.clone(), v2, vec![self.get_gui_image_set()], ()) .unwrap(); let command_buffer = command_buffer .end_render_pass() .unwrap() .build().unwrap(); // Wait on the previous frame, then execute the command buffer and present the image let future = frame_future.join(acquire_future) .then_execute(self.queue.clone(), command_buffer).unwrap() .then_swapchain_present(self.queue.clone(), self.swapchain.clone().unwrap().clone(), image_num) .then_signal_fence_and_flush(); match future { Ok(future) => { (Box::new(future) as Box<_>) } Err(FlushError::OutOfDate) => { self.swapchain_recreate_needed = true; (Box::new(sync::now(self.device.clone())) as Box<_>) } Err(e) => { println!("{:?}", e); (Box::new(sync::now(self.device.clone())) as Box<_>) } } } }