use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, DeviceLocalBuffer, ImmutableBuffer, BufferAccess}; use vulkano::command_buffer::AutoCommandBufferBuilder; use vulkano::descriptor::descriptor_set::{PersistentDescriptorSet, StdDescriptorPoolAlloc}; use vulkano::device::{Device, DeviceExtensions, QueuesIter, Queue}; use vulkano::instance::{Instance, InstanceExtensions, PhysicalDevice, QueueFamily}; use vulkano::pipeline::ComputePipeline; use vulkano::sync::GpuFuture; use vulkano::sync; use std::time::SystemTime; use std::sync::Arc; use std::ffi::CStr; use std::path::PathBuf; use shade_runner as sr; use image::{DynamicImage, ImageBuffer}; use image::GenericImageView; use vulkano::descriptor::pipeline_layout::PipelineLayout; use image::GenericImage; use shade_runner::{ComputeLayout, CompileError}; use vulkano::descriptor::descriptor_set::PersistentDescriptorSetBuf; use shaderc::CompileOptions; pub struct VkProcessor<'a> { pub instance: Arc, pub physical: PhysicalDevice<'a>, pub pipeline: Option>>>, pub device: Arc, pub queues: QueuesIter, pub queue: Arc, pub set: Option>>, ((((), PersistentDescriptorSetBuf>>), PersistentDescriptorSetBuf>>), PersistentDescriptorSetBuf>>)>>>, pub image_buffer: Vec, pub img_buffers: Vec>>, pub settings_buffer: Option>>, pub xy: (u32, u32), } impl<'a> VkProcessor<'a> { pub fn new(instance : &'a Arc) -> VkProcessor<'a> { let physical = PhysicalDevice::enumerate(instance).next().unwrap(); let queue_family = physical.queue_families().find(|&q| q.supports_compute()).unwrap(); let (device, mut queues) = Device::new(physical, physical.supported_features(), &DeviceExtensions::none(), [(queue_family, 0.5)].iter().cloned()).unwrap(); VkProcessor { instance: instance.clone(), physical: physical.clone(), pipeline: Option::None, device: device, queue: queues.next().unwrap(), queues: queues, set: Option::None, image_buffer: Vec::new(), img_buffers: Vec::new(), settings_buffer: Option::None, xy: (0,0), } } pub fn compile_kernel(&mut self, filename: String) { let project_root = std::env::current_dir() .expect("failed to get root directory"); let mut compute_path = project_root.clone(); compute_path.push(PathBuf::from("resources/shaders/")); compute_path.push(PathBuf::from(filename)); let mut options = CompileOptions::new().ok_or(CompileError::CreateCompiler).unwrap(); options.add_macro_definition("SETTING_POS_X", Some("0")); options.add_macro_definition("SETTING_POS_Y", Some("1")); options.add_macro_definition("SETTING_BUCKETS_START", Some("2")); options.add_macro_definition("SETTING_BUCKETS_LEN", Some("2")); let shader = sr::load_compute_with_options(compute_path, options) .expect("Failed to compile"); let vulkano_entry = sr::parse_compute(&shader) .expect("failed to parse"); let x = unsafe { vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.compute) }.unwrap(); let pipeline = Arc::new({ unsafe { ComputePipeline::new(self.device.clone(), &x.compute_entry_point( CStr::from_bytes_with_nul_unchecked(b"main\0"), vulkano_entry.compute_layout), &(), ).unwrap() } }); self.pipeline = Some(pipeline); } pub fn load_buffers(&mut self, image_filename: String) { let project_root = std::env::current_dir() .expect("failed to get root directory"); let mut compute_path = project_root.clone(); compute_path.push(PathBuf::from("resources/images/")); compute_path.push(PathBuf::from(image_filename)); let img = image::open(compute_path).expect("Couldn't find image"); self.xy = img.dimensions(); let data_length = self.xy.0 * self.xy.1 * 4; let pixel_count = img.raw_pixels().len(); println!("Pixel count {}", pixel_count); if pixel_count != data_length as usize { println!("Creating apha channel..."); for i in img.raw_pixels().iter() { if (self.image_buffer.len() + 1) % 4 == 0 { self.image_buffer.push(255); } self.image_buffer.push(*i); } self.image_buffer.push(255); } else { self.image_buffer = img.raw_pixels(); } println!("Buffer length {}", self.image_buffer.len()); println!("Size {:?}", self.xy); println!("Allocating Buffers..."); // Pull out the image data and place it in a buffer for the kernel to write to and for us to read from let write_buffer = { let mut buff = self.image_buffer.iter(); let data_iter = (0..data_length).map(|n| *(buff.next().unwrap())); CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), data_iter).unwrap() }; // Pull out the image data and place it in a buffer for the kernel to read from let read_buffer = { let mut buff = self.image_buffer.iter(); let data_iter = (0..data_length).map(|n| *(buff.next().unwrap())); CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), data_iter).unwrap() }; // A buffer to hold many i32 values to use as settings let settings_buffer = { let vec = vec![self.xy.0, self.xy.1]; let mut buff = vec.iter(); let data_iter = (0..2).map(|n| *(buff.next().unwrap())); CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), data_iter).unwrap() }; println!("Done"); // Create the data descriptor set for our previously created shader pipeline let mut set = PersistentDescriptorSet::start(self.pipeline.clone().unwrap().clone(), 0) .add_buffer(write_buffer.clone()).unwrap() .add_buffer(read_buffer).unwrap() .add_buffer(settings_buffer).unwrap(); self.set = Some(Arc::new(set.build().unwrap())); self.img_buffers.push(write_buffer); } pub fn run_kernel(&mut self) { println!("Running Kernel..."); // The command buffer I think pretty much serves to define what runs where for how many times let command_buffer = AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(),self.queue.family()).unwrap() .dispatch([self.xy.0, self.xy.1, 1], self.pipeline.clone().unwrap().clone(), self.set.clone().unwrap().clone(), ()).unwrap() .build().unwrap(); // Create a future for running the command buffer and then just fence it let future = sync::now(self.device.clone()) .then_execute(self.queue.clone(), command_buffer).unwrap() .then_signal_fence_and_flush().unwrap(); // I think this is redundant and returns immediately future.wait(None).unwrap(); println!("Done running kernel"); } pub fn read_image(&self) -> Vec { // The buffer is sync'd so we can just read straight from the handle let mut data_buffer_content = self.img_buffers.get(0).unwrap().read().unwrap(); println!("Reading output"); let mut image_buffer = Vec::new(); for y in 0..self.xy.1 { for x in 0..self.xy.0 { let r = data_buffer_content[((self.xy.0 * y + x) * 4 + 0) as usize] as u8; let g = data_buffer_content[((self.xy.0 * y + x) * 4 + 1) as usize] as u8; let b = data_buffer_content[((self.xy.0 * y + x) * 4 + 2) as usize] as u8; let a = data_buffer_content[((self.xy.0 * y + x) * 4 + 3) as usize] as u8; image_buffer.push(r); image_buffer.push(g); image_buffer.push(b); image_buffer.push(a); //self.img.unwrap().put_pixel(x, y, image::Rgba([r, g, b, a])) } } image_buffer } pub fn save_image(&self) { println!("Saving output"); let img_data = self.read_image(); let img = ImageBuffer::from_fn(self.xy.0, self.xy.1, |x, y| { let r = img_data[((self.xy.0 * y + x) * 4 + 0) as usize] as u8; let g = img_data[((self.xy.0 * y + x) * 4 + 1) as usize] as u8; let b = img_data[((self.xy.0 * y + x) * 4 + 2) as usize] as u8; let a = img_data[((self.xy.0 * y + x) * 4 + 3) as usize] as u8; image::Rgba([r, g, b, a]) }); img.save(format!("output/{}.png", SystemTime::now().duration_since(SystemTime::UNIX_EPOCH).unwrap().as_secs())); } }