use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, DeviceLocalBuffer, ImmutableBuffer, BufferAccess}; use vulkano::command_buffer::AutoCommandBufferBuilder; use vulkano::descriptor::descriptor_set::PersistentDescriptorSet; use vulkano::device::{Device, DeviceExtensions, QueuesIter, Queue}; use vulkano::instance::{Instance, InstanceExtensions, PhysicalDevice, QueueFamily}; use vulkano::pipeline::ComputePipeline; use vulkano::sync::GpuFuture; use vulkano::sync; use std::time::SystemTime; use std::sync::Arc; use std::ffi::CStr; use std::path::PathBuf; use shade_runner as sr; use image::DynamicImage; pub struct VkProcessor<'a> { instance: Arc, physical: PhysicalDevice<'a>, queue_family: QueueFamily<'a>, device: Arc, queues: QueuesIter, queue: Arc, img: Option, image_buffer: Vec, buffers: Vec:: } impl VkProcessor { pub fn new() -> VkProcessor { let instance = Instance::new(None, &InstanceExtensions::none(), None).unwrap(); let physical = PhysicalDevice::enumerate(&instance).next().unwrap(); let queue_family = physical.queue_families().find(|&q| q.supports_compute()).unwrap(); let (device, mut queues) = Device::new(physical, physical.supported_features(), &DeviceExtensions::none(), [(queue_family, 0.5)].iter().cloned()).unwrap(); VkProcessor { instance: instance, physical: physical, queue_family: queue_family, device: device, queues: queues, queue: queues.next().unwrap(), img: Option::None, image_buffer: Vec::new(), buffers: Vec::new(), } } pub fn compile_kernel(&mut self) { let project_root = std::env::current_dir().expect("failed to get root directory"); let mut compute_path = project_root.clone(); compute_path.push(PathBuf::from("resources/shaders/simple-homogenize.compute")); let shader = sr::load_compute(compute_path).expect("Failed to compile"); let vulkano_entry = sr::parse_compute(&shader).expect("failed to parse"); let x = unsafe { vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.compute) }.unwrap(); // Compile the shader and add it to a pipeline let pipeline = Arc::new({ unsafe { ComputePipeline::new(self.device.clone(), &x.compute_entry_point( CStr::from_bytes_with_nul_unchecked(b"main\0"), vulkano_entry.compute_layout), &(), ).unwrap() } }); } pub fn load_buffers(&mut self) { self.img = Option::Some(image::open("resources/images/funky-bird.jpg").unwrap()); let xy = self.img.dimensions(); let data_length = xy.0 * xy.1 * 4; let pixel_count = self.img.raw_pixels().len(); println!("Pixel count {}", pixel_count); if pixel_count != data_length as usize { println!("Creating apha channel..."); for i in self.img.raw_pixels().iter() { if (self.image_buffer.len() + 1) % 4 == 0 { self.image_buffer.push(255); } self.image_buffer.push(*i); } self.image_buffer.push(255); } else { self.image_buffer = self.img.raw_pixels(); } println!("Buffer length {}", self.image_buffer.len()); println!("Size {:?}", xy); println!("Allocating Buffers..."); { // Pull out the image data and place it in a buffer for the kernel to write to and for us to read from let write_buffer = { let mut buff = image_buffer.iter(); let data_iter = (0..data_length).map(|n| *(buff.next().unwrap())); CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap() }; // Pull out the image data and place it in a buffer for the kernel to read from let read_buffer = { let mut buff = image_buffer.iter(); let data_iter = (0..data_length).map(|n| *(buff.next().unwrap())); CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap() }; // A buffer to hold many i32 values to use as settings let settings_buffer = { let vec = vec![xy.0, xy.1]; let mut buff = vec.iter(); let data_iter = (0..2).map(|n| *(buff.next().unwrap())); CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap() }; } println!("Done"); // Create the data descriptor set for our previously created shader pipeline let mut set = PersistentDescriptorSet::start(pipeline.clone(), 0) .add_buffer(write_buffer.clone()).unwrap() .add_buffer(read_buffer.clone()).unwrap() .add_buffer(settings_buffer.clone()).unwrap(); let mut set = Arc::new(set.build().unwrap()); } pub fn run_kernel(&mut self) { println!("Running Kernel..."); // The command buffer I think pretty much serves to define what runs where for how many times let command_buffer = AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family()).unwrap() .dispatch([xy.0, xy.1, 1], pipeline.clone(), set.clone(), ()).unwrap() .build().unwrap(); // Create a future for running the command buffer and then just fence it let future = sync::now(device.clone()) .then_execute(queue.clone(), command_buffer).unwrap() .then_signal_fence_and_flush().unwrap(); // I think this is redundant and returns immediately future.wait(None).unwrap(); println!("Done running kernel"); } pub fn read_image() -> Vec { // The buffer is sync'd so we can just read straight from the handle let mut data_buffer_content = write_buffer.read().unwrap(); println!("Reading output"); let mut image_buffer = Vec::new(); for y in 0..xy.1 { for x in 0..xy.0 { let r = data_buffer_content[((xy.0 * y + x) * 4 + 0) as usize] as u8; let g = data_buffer_content[((xy.0 * y + x) * 4 + 1) as usize] as u8; let b = data_buffer_content[((xy.0 * y + x) * 4 + 2) as usize] as u8; let a = data_buffer_content[((xy.0 * y + x) * 4 + 3) as usize] as u8; image_buffer.push(r); image_buffer.push(g); image_buffer.push(b); image_buffer.push(a); img.put_pixel(x, y, image::Rgba([r, g, b, a])) } } image_buffer } pub fn save_image(&self) { println!("Saving output"); img.save(format!("output/{}.png", SystemTime::now().duration_since(SystemTime::UNIX_EPOCH).unwrap().as_secs())); } }