parent
5cb45ad648
commit
f5cc389e53
@ -1 +0,0 @@
|
||||
Subproject commit ebcd0d1d0b3061fcb57444e1dbe5829ef25705cd
|
@ -0,0 +1,985 @@
|
||||
/*
|
||||
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
|
||||
|
||||
This program is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License
|
||||
version 2 as published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include "nRF24L01.h"
|
||||
#include "RF24_config.h"
|
||||
#include "RF24.h"
|
||||
#include <util/delay.h>
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::csn(int mode)
|
||||
{
|
||||
// Minimum ideal SPI bus speed is 2x data rate
|
||||
// If we assume 2Mbs data rate and 16Mhz clock, a
|
||||
// divider of 4 is the minimum we want.
|
||||
// CLK:BUS 8Mhz:2Mhz, 16Mhz:4Mhz, or 20Mhz:5Mhz
|
||||
#ifdef ARDUINO
|
||||
SPI.setBitOrder(MSBFIRST);
|
||||
SPI.setDataMode(SPI_MODE0);
|
||||
SPI.setClockDivider(SPI_CLOCK_DIV4);
|
||||
#endif
|
||||
digitalWrite(csn_pin,mode);
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::ce(int level)
|
||||
{
|
||||
digitalWrite(ce_pin,level);
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len)
|
||||
{
|
||||
uint8_t status;
|
||||
|
||||
csn(LOW);
|
||||
status = SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) );
|
||||
while ( len-- )
|
||||
*buf++ = SPI.transfer(0xff);
|
||||
|
||||
csn(HIGH);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
uint8_t RF24::read_register(uint8_t reg)
|
||||
{
|
||||
csn(LOW);
|
||||
SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) );
|
||||
uint8_t result = SPI.transfer(0xff);
|
||||
|
||||
csn(HIGH);
|
||||
return result;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
uint8_t RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len)
|
||||
{
|
||||
uint8_t status;
|
||||
|
||||
csn(LOW);
|
||||
status = SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) );
|
||||
while ( len-- )
|
||||
SPI.transfer(*buf++);
|
||||
|
||||
csn(HIGH);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
uint8_t RF24::write_register(uint8_t reg, uint8_t value)
|
||||
{
|
||||
uint8_t status;
|
||||
|
||||
IF_SERIAL_DEBUG(printf_P(PSTR("write_register(%02x,%02x)\r\n"),reg,value));
|
||||
|
||||
csn(LOW);
|
||||
status = SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) );
|
||||
SPI.transfer(value);
|
||||
csn(HIGH);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
uint8_t RF24::write_payload(const void* buf, uint8_t len)
|
||||
{
|
||||
uint8_t status;
|
||||
|
||||
const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
|
||||
|
||||
uint8_t data_len = min(len,payload_size);
|
||||
uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
|
||||
|
||||
//printf("[Writing %u bytes %u blanks]",data_len,blank_len);
|
||||
|
||||
csn(LOW);
|
||||
status = SPI.transfer( W_TX_PAYLOAD );
|
||||
while ( data_len-- )
|
||||
SPI.transfer(*current++);
|
||||
while ( blank_len-- )
|
||||
SPI.transfer(0);
|
||||
csn(HIGH);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
uint8_t RF24::read_payload(void* buf, uint8_t len)
|
||||
{
|
||||
uint8_t status;
|
||||
uint8_t* current = reinterpret_cast<uint8_t*>(buf);
|
||||
|
||||
uint8_t data_len = min(len,payload_size);
|
||||
uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
|
||||
|
||||
//printf("[Reading %u bytes %u blanks]",data_len,blank_len);
|
||||
|
||||
csn(LOW);
|
||||
status = SPI.transfer( R_RX_PAYLOAD );
|
||||
while ( data_len-- )
|
||||
*current++ = SPI.transfer(0xff);
|
||||
while ( blank_len-- )
|
||||
SPI.transfer(0xff);
|
||||
csn(HIGH);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
uint8_t RF24::flush_rx(void)
|
||||
{
|
||||
uint8_t status;
|
||||
|
||||
csn(LOW);
|
||||
status = SPI.transfer( FLUSH_RX );
|
||||
csn(HIGH);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
uint8_t RF24::flush_tx(void)
|
||||
{
|
||||
uint8_t status;
|
||||
|
||||
csn(LOW);
|
||||
status = SPI.transfer( FLUSH_TX );
|
||||
csn(HIGH);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
uint8_t RF24::get_status(void)
|
||||
{
|
||||
uint8_t status;
|
||||
|
||||
csn(LOW);
|
||||
status = SPI.transfer( NOP );
|
||||
csn(HIGH);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::print_status(uint8_t status)
|
||||
{
|
||||
printf_P(PSTR("STATUS\t\t = 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\r\n"),
|
||||
status,
|
||||
(status & _BV(RX_DR))?1:0,
|
||||
(status & _BV(TX_DS))?1:0,
|
||||
(status & _BV(MAX_RT))?1:0,
|
||||
((status >> RX_P_NO) & B111),
|
||||
(status & _BV(TX_FULL))?1:0
|
||||
);
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::print_observe_tx(uint8_t value)
|
||||
{
|
||||
printf_P(PSTR("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\r\n"),
|
||||
value,
|
||||
(value >> PLOS_CNT) & B1111,
|
||||
(value >> ARC_CNT) & B1111
|
||||
);
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::print_byte_register(const char* name, uint8_t reg, uint8_t qty)
|
||||
{
|
||||
char extra_tab = strlen_P(name) < 8 ? '\t' : 0;
|
||||
printf_P(PSTR(PRIPSTR"\t%c ="),name,extra_tab);
|
||||
while (qty--)
|
||||
printf_P(PSTR(" 0x%02x"),read_register(reg++));
|
||||
printf_P(PSTR("\r\n"));
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::print_address_register(const char* name, uint8_t reg, uint8_t qty)
|
||||
{
|
||||
char extra_tab = strlen_P(name) < 8 ? '\t' : 0;
|
||||
printf_P(PSTR(PRIPSTR"\t%c ="),name,extra_tab);
|
||||
|
||||
while (qty--)
|
||||
{
|
||||
uint8_t buffer[5];
|
||||
read_register(reg++,buffer,sizeof buffer);
|
||||
|
||||
printf_P(PSTR(" 0x"));
|
||||
uint8_t* bufptr = buffer + sizeof buffer;
|
||||
while( --bufptr >= buffer )
|
||||
printf_P(PSTR("%02x"),*bufptr);
|
||||
}
|
||||
|
||||
printf_P(PSTR("\r\n"));
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
RF24::RF24(uint8_t _cepin, uint8_t _cspin):
|
||||
ce_pin(_cepin), csn_pin(_cspin), wide_band(true), p_variant(false),
|
||||
payload_size(32), ack_payload_available(false), dynamic_payloads_enabled(false),
|
||||
pipe0_reading_address(0)
|
||||
{
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::setChannel(uint8_t channel)
|
||||
{
|
||||
// TODO: This method could take advantage of the 'wide_band' calculation
|
||||
// done in setChannel() to require certain channel spacing.
|
||||
|
||||
const uint8_t max_channel = 127;
|
||||
write_register(RF_CH,min(channel,max_channel));
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::setPayloadSize(uint8_t size)
|
||||
{
|
||||
const uint8_t max_payload_size = 32;
|
||||
payload_size = min(size,max_payload_size);
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
uint8_t RF24::getPayloadSize(void)
|
||||
{
|
||||
return payload_size;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
static const char rf24_datarate_e_str_0[] PROGMEM = "1MBPS";
|
||||
static const char rf24_datarate_e_str_1[] PROGMEM = "2MBPS";
|
||||
static const char rf24_datarate_e_str_2[] PROGMEM = "250KBPS";
|
||||
static const char * const rf24_datarate_e_str_P[] PROGMEM = {
|
||||
rf24_datarate_e_str_0,
|
||||
rf24_datarate_e_str_1,
|
||||
rf24_datarate_e_str_2,
|
||||
};
|
||||
static const char rf24_model_e_str_0[] PROGMEM = "nRF24L01";
|
||||
static const char rf24_model_e_str_1[] PROGMEM = "nRF24L01+";
|
||||
static const char * const rf24_model_e_str_P[] PROGMEM = {
|
||||
rf24_model_e_str_0,
|
||||
rf24_model_e_str_1,
|
||||
};
|
||||
static const char rf24_crclength_e_str_0[] PROGMEM = "Disabled";
|
||||
static const char rf24_crclength_e_str_1[] PROGMEM = "8 bits";
|
||||
static const char rf24_crclength_e_str_2[] PROGMEM = "16 bits" ;
|
||||
static const char * const rf24_crclength_e_str_P[] PROGMEM = {
|
||||
rf24_crclength_e_str_0,
|
||||
rf24_crclength_e_str_1,
|
||||
rf24_crclength_e_str_2,
|
||||
};
|
||||
static const char rf24_pa_dbm_e_str_0[] PROGMEM = "PA_MIN";
|
||||
static const char rf24_pa_dbm_e_str_1[] PROGMEM = "PA_LOW";
|
||||
static const char rf24_pa_dbm_e_str_2[] PROGMEM = "LA_MED";
|
||||
static const char rf24_pa_dbm_e_str_3[] PROGMEM = "PA_HIGH";
|
||||
static const char * const rf24_pa_dbm_e_str_P[] PROGMEM = {
|
||||
rf24_pa_dbm_e_str_0,
|
||||
rf24_pa_dbm_e_str_1,
|
||||
rf24_pa_dbm_e_str_2,
|
||||
rf24_pa_dbm_e_str_3,
|
||||
};
|
||||
|
||||
void RF24::printDetails(void)
|
||||
{
|
||||
print_status(get_status());
|
||||
|
||||
print_address_register(PSTR("RX_ADDR_P0-1"),RX_ADDR_P0,2);
|
||||
print_byte_register(PSTR("RX_ADDR_P2-5"),RX_ADDR_P2,4);
|
||||
print_address_register(PSTR("TX_ADDR"),TX_ADDR);
|
||||
|
||||
print_byte_register(PSTR("RX_PW_P0-6"),RX_PW_P0,6);
|
||||
print_byte_register(PSTR("EN_AA"),EN_AA);
|
||||
print_byte_register(PSTR("EN_RXADDR"),EN_RXADDR);
|
||||
print_byte_register(PSTR("RF_CH"),RF_CH);
|
||||
print_byte_register(PSTR("RF_SETUP"),RF_SETUP);
|
||||
print_byte_register(PSTR("CONFIG"),CONFIG);
|
||||
print_byte_register(PSTR("DYNPD/FEATURE"),DYNPD,2);
|
||||
|
||||
printf_P(PSTR("Data Rate\t = %S\r\n"),pgm_read_word(&rf24_datarate_e_str_P[getDataRate()]));
|
||||
printf_P(PSTR("Model\t\t = %S\r\n"),pgm_read_word(&rf24_model_e_str_P[isPVariant()]));
|
||||
printf_P(PSTR("CRC Length\t = %S\r\n"),pgm_read_word(&rf24_crclength_e_str_P[getCRCLength()]));
|
||||
printf_P(PSTR("PA Power\t = %S\r\n"),pgm_read_word(&rf24_pa_dbm_e_str_P[getPALevel()]));
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::begin(void)
|
||||
{
|
||||
// Initialize pins
|
||||
pinMode(ce_pin,OUTPUT);
|
||||
pinMode(csn_pin,OUTPUT);
|
||||
|
||||
// Initialize SPI bus
|
||||
SPI.begin();
|
||||
|
||||
ce(LOW);
|
||||
csn(HIGH);
|
||||
|
||||
// Must allow the radio time to settle else configuration bits will not necessarily stick.
|
||||
// This is actually only required following power up but some settling time also appears to
|
||||
// be required after resets too. For full coverage, we'll always assume the worst.
|
||||
// Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped.
|
||||
// Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure.
|
||||
// WARNING: Delay is based on P-variant whereby non-P *may* require different timing.
|
||||
_delay_ms( 5 ) ;
|
||||
|
||||
// Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
|
||||
// WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
|
||||
// sizes must never be used. See documentation for a more complete explanation.
|
||||
write_register(SETUP_RETR,(B0100 << ARD) | (B1111 << ARC));
|
||||
|
||||
// Restore our default PA level
|
||||
setPALevel( RF24_PA_MAX ) ;
|
||||
|
||||
// Determine if this is a p or non-p RF24 module and then
|
||||
// reset our data rate back to default value. This works
|
||||
// because a non-P variant won't allow the data rate to
|
||||
// be set to 250Kbps.
|
||||
if( setDataRate( RF24_250KBPS ) )
|
||||
{
|
||||
p_variant = true ;
|
||||
}
|
||||
|
||||
// Then set the data rate to the slowest (and most reliable) speed supported by all
|
||||
// hardware.
|
||||
setDataRate( RF24_1MBPS ) ;
|
||||
|
||||
// Initialize CRC and request 2-byte (16bit) CRC
|
||||
setCRCLength( RF24_CRC_16 ) ;
|
||||
|
||||
// Disable dynamic payloads, to match dynamic_payloads_enabled setting
|
||||
write_register(DYNPD,0);
|
||||
|
||||
// Reset current status
|
||||
// Notice reset and flush is the last thing we do
|
||||
write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
|
||||
|
||||
// Set up default configuration. Callers can always change it later.
|
||||
// This channel should be universally safe and not bleed over into adjacent
|
||||
// spectrum.
|
||||
setChannel(76);
|
||||
|
||||
// Flush buffers
|
||||
flush_rx();
|
||||
flush_tx();
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::startListening(void)
|
||||
{
|
||||
write_register(CONFIG, read_register(CONFIG) | _BV(PWR_UP) | _BV(PRIM_RX));
|
||||
write_register(STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
|
||||
|
||||
// Restore the pipe0 adddress, if exists
|
||||
if (pipe0_reading_address)
|
||||
write_register(RX_ADDR_P0, reinterpret_cast<const uint8_t*>(&pipe0_reading_address), 5);
|
||||
|
||||
// Flush buffers
|
||||
flush_rx();
|
||||
flush_tx();
|
||||
|
||||
// Go!
|
||||
ce(HIGH);
|
||||
|
||||
// wait for the radio to come up (130us actually only needed)
|
||||
delayMicroseconds(130);
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::stopListening(void)
|
||||
{
|
||||
ce(LOW);
|
||||
flush_tx();
|
||||
flush_rx();
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::powerDown(void)
|
||||
{
|
||||
write_register(CONFIG,read_register(CONFIG) & ~_BV(PWR_UP));
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::powerUp(void)
|
||||
{
|
||||
write_register(CONFIG,read_register(CONFIG) | _BV(PWR_UP));
|
||||
}
|
||||
|
||||
/******************************************************************/
|
||||
|
||||
bool RF24::write( const void* buf, uint8_t len )
|
||||
{
|
||||
bool result = false;
|
||||
|
||||
// Begin the write
|
||||
startWrite(buf,len);
|
||||
|
||||
// ------------
|
||||
// At this point we could return from a non-blocking write, and then call
|
||||
// the rest after an interrupt
|
||||
|
||||
// Instead, we are going to block here until we get TX_DS (transmission completed and ack'd)
|
||||
// or MAX_RT (maximum retries, transmission failed). Also, we'll timeout in case the radio
|
||||
// is flaky and we get neither.
|
||||
|
||||
// IN the end, the send should be blocking. It comes back in 60ms worst case, or much faster
|
||||
// if I tighted up the retry logic. (Default settings will be 1500us.
|
||||
// Monitor the send
|
||||
uint8_t observe_tx;
|
||||
uint8_t status;
|
||||
uint32_t sent_at = millis();
|
||||
const uint32_t timeout = 500; //ms to wait for timeout
|
||||
do
|
||||
{
|
||||
status = read_register(OBSERVE_TX,&observe_tx,1);
|
||||
IF_SERIAL_DEBUG(Serial.print(observe_tx,HEX));
|
||||
}
|
||||
while( ! ( status & ( _BV(TX_DS) | _BV(MAX_RT) ) ) && ( millis() - sent_at < timeout ) );
|
||||
|
||||
// The part above is what you could recreate with your own interrupt handler,
|
||||
// and then call this when you got an interrupt
|
||||
// ------------
|
||||
|
||||
// Call this when you get an interrupt
|
||||
// The status tells us three things
|
||||
// * The send was successful (TX_DS)
|
||||
// * The send failed, too many retries (MAX_RT)
|
||||
// * There is an ack packet waiting (RX_DR)
|
||||
bool tx_ok, tx_fail;
|
||||
whatHappened(tx_ok,tx_fail,ack_payload_available);
|
||||
|
||||
//printf("%u%u%u\r\n",tx_ok,tx_fail,ack_payload_available);
|
||||
|
||||
result = tx_ok;
|
||||
IF_SERIAL_DEBUG(Serial.print(result?"...OK.":"...Failed"));
|
||||
|
||||
// Handle the ack packet
|
||||
if ( ack_payload_available )
|
||||
{
|
||||
ack_payload_length = getDynamicPayloadSize();
|
||||
IF_SERIAL_DEBUG(Serial.print("[AckPacket]/"));
|
||||
IF_SERIAL_DEBUG(Serial.println(ack_payload_length,DEC));
|
||||
}
|
||||
|
||||
// Yay, we are done.
|
||||
|
||||
// Power down
|
||||
powerDown();
|
||||
|
||||
// Flush buffers (Is this a relic of past experimentation, and not needed anymore??)
|
||||
flush_tx();
|
||||
|
||||
return result;
|
||||
}
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::startWrite( const void* buf, uint8_t len )
|
||||
{
|
||||
// Transmitter power-up
|
||||
write_register(CONFIG, ( read_register(CONFIG) | _BV(PWR_UP) ) & ~_BV(PRIM_RX) );
|
||||
delayMicroseconds(150);
|
||||
|
||||
// Send the payload
|
||||
write_payload( buf, len );
|
||||
|
||||
// Allons!
|
||||
ce(HIGH);
|
||||
delayMicroseconds(15);
|
||||
ce(LOW);
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
uint8_t RF24::getDynamicPayloadSize(void)
|
||||
{
|
||||
uint8_t result = 0;
|
||||
|
||||
csn(LOW);
|
||||
SPI.transfer( R_RX_PL_WID );
|
||||
result = SPI.transfer(0xff);
|
||||
csn(HIGH);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
bool RF24::available(void)
|
||||
{
|
||||
return available(NULL);
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
bool RF24::available(uint8_t* pipe_num)
|
||||
{
|
||||
uint8_t status = get_status();
|
||||
|
||||
// Too noisy, enable if you really want lots o data!!
|
||||
//IF_SERIAL_DEBUG(print_status(status));
|
||||
|
||||
bool result = ( status & _BV(RX_DR) );
|
||||
|
||||
if (result)
|
||||
{
|
||||
// If the caller wants the pipe number, include that
|
||||
if ( pipe_num )
|
||||
*pipe_num = ( status >> RX_P_NO ) & B111;
|
||||
|
||||
// Clear the status bit
|
||||
|
||||
// ??? Should this REALLY be cleared now? Or wait until we
|
||||
// actually READ the payload?
|
||||
|
||||
write_register(STATUS,_BV(RX_DR) );
|
||||
|
||||
// Handle ack payload receipt
|
||||
if ( status & _BV(TX_DS) )
|
||||
{
|
||||
write_register(STATUS,_BV(TX_DS));
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
bool RF24::read( void* buf, uint8_t len )
|
||||
{
|
||||
// Fetch the payload
|
||||
read_payload( buf, len );
|
||||
|
||||
// was this the last of the data available?
|
||||
return read_register(FIFO_STATUS) & _BV(RX_EMPTY);
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready)
|
||||
{
|
||||
// Read the status & reset the status in one easy call
|
||||
// Or is that such a good idea?
|
||||
uint8_t status = write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
|
||||
|
||||
// Report to the user what happened
|
||||
tx_ok = status & _BV(TX_DS);
|
||||
tx_fail = status & _BV(MAX_RT);
|
||||
rx_ready = status & _BV(RX_DR);
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::openWritingPipe(uint64_t value)
|
||||
{
|
||||
// Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
|
||||
// expects it LSB first too, so we're good.
|
||||
|
||||
write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), 5);
|
||||
write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), 5);
|
||||
|
||||
const uint8_t max_payload_size = 32;
|
||||
write_register(RX_PW_P0,min(payload_size,max_payload_size));
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
static const uint8_t child_pipe[] PROGMEM =
|
||||
{
|
||||
RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5
|
||||
};
|
||||
static const uint8_t child_payload_size[] PROGMEM =
|
||||
{
|
||||
RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5
|
||||
};
|
||||
static const uint8_t child_pipe_enable[] PROGMEM =
|
||||
{
|
||||
ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5
|
||||
};
|
||||
|
||||
void RF24::openReadingPipe(uint8_t child, uint64_t address)
|
||||
{
|
||||
// If this is pipe 0, cache the address. This is needed because
|
||||
// openWritingPipe() will overwrite the pipe 0 address, so
|
||||
// startListening() will have to restore it.
|
||||
if (child == 0)
|
||||
pipe0_reading_address = address;
|
||||
|
||||
if (child <= 6)
|
||||
{
|
||||
// For pipes 2-5, only write the LSB
|
||||
if ( child < 2 )
|
||||
write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), 5);
|
||||
else
|
||||
write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), 1);
|
||||
|
||||
write_register(pgm_read_byte(&child_payload_size[child]),payload_size);
|
||||
|
||||
// Note it would be more efficient to set all of the bits for all open
|
||||
// pipes at once. However, I thought it would make the calling code
|
||||
// more simple to do it this way.
|
||||
write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child])));
|
||||
}
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::toggle_features(void)
|
||||
{
|
||||
csn(LOW);
|
||||
SPI.transfer( ACTIVATE );
|
||||
SPI.transfer( 0x73 );
|
||||
csn(HIGH);
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::enableDynamicPayloads(void)
|
||||
{
|
||||
// Enable dynamic payload throughout the system
|
||||
write_register(FEATURE,read_register(FEATURE) | _BV(EN_DPL) );
|
||||
|
||||
// If it didn't work, the features are not enabled
|
||||
if ( ! read_register(FEATURE) )
|
||||
{
|
||||
// So enable them and try again
|
||||
toggle_features();
|
||||
write_register(FEATURE,read_register(FEATURE) | _BV(EN_DPL) );
|
||||
}
|
||||
|
||||
IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
|
||||
|
||||
// Enable dynamic payload on all pipes
|
||||
//
|
||||
// Not sure the use case of only having dynamic payload on certain
|
||||
// pipes, so the library does not support it.
|
||||
write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P5) | _BV(DPL_P4) | _BV(DPL_P3) | _BV(DPL_P2) | _BV(DPL_P1) | _BV(DPL_P0));
|
||||
|
||||
dynamic_payloads_enabled = true;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::enableAckPayload(void)
|
||||
{
|
||||
//
|
||||
// enable ack payload and dynamic payload features
|
||||
//
|
||||
|
||||
write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) );
|
||||
|
||||
// If it didn't work, the features are not enabled
|
||||
if ( ! read_register(FEATURE) )
|
||||
{
|
||||
// So enable them and try again
|
||||
toggle_features();
|
||||
write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) );
|
||||
}
|
||||
|
||||
IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
|
||||
|
||||
//
|
||||
// Enable dynamic payload on pipes 0 & 1
|
||||
//
|
||||
|
||||
write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0));
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::writeAckPayload(uint8_t pipe, const void* buf, uint8_t len)
|
||||
{
|
||||
const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
|
||||
|
||||
csn(LOW);
|
||||
SPI.transfer( W_ACK_PAYLOAD | ( pipe & B111 ) );
|
||||
const uint8_t max_payload_size = 32;
|
||||
uint8_t data_len = min(len,max_payload_size);
|
||||
while ( data_len-- )
|
||||
SPI.transfer(*current++);
|
||||
|
||||
csn(HIGH);
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
bool RF24::isAckPayloadAvailable(void)
|
||||
{
|
||||
bool result = ack_payload_available;
|
||||
ack_payload_available = false;
|
||||
return result;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
bool RF24::isPVariant(void)
|
||||
{
|
||||
return p_variant ;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::setAutoAck(bool enable)
|
||||
{
|
||||
if ( enable )
|
||||
write_register(EN_AA, B111111);
|
||||
else
|
||||
write_register(EN_AA, 0);
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::setAutoAck( uint8_t pipe, bool enable )
|
||||
{
|
||||
if ( pipe <= 6 )
|
||||
{
|
||||
uint8_t en_aa = read_register( EN_AA ) ;
|
||||
if( enable )
|
||||
{
|
||||
en_aa |= _BV(pipe) ;
|
||||
}
|
||||
else
|
||||
{
|
||||
en_aa &= ~_BV(pipe) ;
|
||||
}
|
||||
write_register( EN_AA, en_aa ) ;
|
||||
}
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
bool RF24::testCarrier(void)
|
||||
{
|
||||
return ( read_register(CD) & 1 );
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
bool RF24::testRPD(void)
|
||||
{
|
||||
return ( read_register(RPD) & 1 ) ;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::setPALevel(rf24_pa_dbm_e level)
|
||||
{
|
||||
uint8_t setup = read_register(RF_SETUP) ;
|
||||
setup &= ~(_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ;
|
||||
|
||||
// switch uses RAM (evil!)
|
||||
if ( level == RF24_PA_MAX )
|
||||
{
|
||||
setup |= (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ;
|
||||
}
|
||||
else if ( level == RF24_PA_HIGH )
|
||||
{
|
||||
setup |= _BV(RF_PWR_HIGH) ;
|
||||
}
|
||||
else if ( level == RF24_PA_LOW )
|
||||
{
|
||||
setup |= _BV(RF_PWR_LOW);
|
||||
}
|
||||
else if ( level == RF24_PA_MIN )
|
||||
{
|
||||
// nothing
|
||||
}
|
||||
else if ( level == RF24_PA_ERROR )
|
||||
{
|
||||
// On error, go to maximum PA
|
||||
setup |= (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ;
|
||||
}
|
||||
|
||||
write_register( RF_SETUP, setup ) ;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
rf24_pa_dbm_e RF24::getPALevel(void)
|
||||
{
|
||||
rf24_pa_dbm_e result = RF24_PA_ERROR ;
|
||||
uint8_t power = read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) ;
|
||||
|
||||
// switch uses RAM (evil!)
|
||||
if ( power == (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH)) )
|
||||
{
|
||||
result = RF24_PA_MAX ;
|
||||
}
|
||||
else if ( power == _BV(RF_PWR_HIGH) )
|
||||
{
|
||||
result = RF24_PA_HIGH ;
|
||||
}
|
||||
else if ( power == _BV(RF_PWR_LOW) )
|
||||
{
|
||||
result = RF24_PA_LOW ;
|
||||
}
|
||||
else
|
||||
{
|
||||
result = RF24_PA_MIN ;
|
||||
}
|
||||
|
||||
return result ;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
bool RF24::setDataRate(rf24_datarate_e speed)
|
||||
{
|
||||
bool result = false;
|
||||
uint8_t setup = read_register(RF_SETUP) ;
|
||||
|
||||
// HIGH and LOW '00' is 1Mbs - our default
|
||||
wide_band = false ;
|
||||
setup &= ~(_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)) ;
|
||||
if( speed == RF24_250KBPS )
|
||||
{
|
||||
// Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0
|
||||
// Making it '10'.
|
||||
wide_band = false ;
|
||||
setup |= _BV( RF_DR_LOW ) ;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
|
||||
// Making it '01'
|
||||
if ( speed == RF24_2MBPS )
|
||||
{
|
||||
wide_band = true ;
|
||||
setup |= _BV(RF_DR_HIGH);
|
||||
}
|
||||
else
|
||||
{
|
||||
// 1Mbs
|
||||
wide_band = false ;
|
||||
}
|
||||
}
|
||||
write_register(RF_SETUP,setup);
|
||||
|
||||
// Verify our result
|
||||
if ( read_register(RF_SETUP) == setup )
|
||||
{
|
||||
result = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
wide_band = false;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
rf24_datarate_e RF24::getDataRate( void )
|
||||
{
|
||||
rf24_datarate_e result ;
|
||||
uint8_t dr = read_register(RF_SETUP) & (_BV(RF_DR_LOW) | _BV(RF_DR_HIGH));
|
||||
|
||||
// switch uses RAM (evil!)
|
||||
// Order matters in our case below
|
||||
if ( dr == _BV(RF_DR_LOW) )
|
||||
{
|
||||
// '10' = 250KBPS
|
||||
result = RF24_250KBPS ;
|
||||
}
|
||||
else if ( dr == _BV(RF_DR_HIGH) )
|
||||
{
|
||||
// '01' = 2MBPS
|
||||
result = RF24_2MBPS ;
|
||||
}
|
||||
else
|
||||
{
|
||||
// '00' = 1MBPS
|
||||
result = RF24_1MBPS ;
|
||||
}
|
||||
return result ;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::setCRCLength(rf24_crclength_e length)
|
||||
{
|
||||
uint8_t config = read_register(CONFIG) & ~( _BV(CRCO) | _BV(EN_CRC)) ;
|
||||
|
||||
// switch uses RAM (evil!)
|
||||
if ( length == RF24_CRC_DISABLED )
|
||||
{
|
||||
// Do nothing, we turned it off above.
|
||||
}
|
||||
else if ( length == RF24_CRC_8 )
|
||||
{
|
||||
config |= _BV(EN_CRC);
|
||||
}
|
||||
else
|
||||
{
|
||||
config |= _BV(EN_CRC);
|
||||
config |= _BV( CRCO );
|
||||
}
|
||||
write_register( CONFIG, config ) ;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
rf24_crclength_e RF24::getCRCLength(void)
|
||||
{
|
||||
rf24_crclength_e result = RF24_CRC_DISABLED;
|
||||
uint8_t config = read_register(CONFIG) & ( _BV(CRCO) | _BV(EN_CRC)) ;
|
||||
|
||||
if ( config & _BV(EN_CRC ) )
|
||||
{
|
||||
if ( config & _BV(CRCO) )
|
||||
result = RF24_CRC_16;
|
||||
else
|
||||
result = RF24_CRC_8;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void RF24::disableCRC( void )
|
||||
{
|
||||
uint8_t disable = read_register(CONFIG) & ~_BV(EN_CRC) ;
|
||||
write_register( CONFIG, disable ) ;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
void RF24::setRetries(uint8_t delay, uint8_t count)
|
||||
{
|
||||
write_register(SETUP_RETR,(delay&0xf)<<ARD | (count&0xf)<<ARC);
|
||||
}
|
||||
|
||||
// vim:ai:cin:sts=2 sw=2 ft=cpp
|
||||
|
@ -0,0 +1,819 @@
|
||||
/*
|
||||
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
|
||||
|
||||
This program is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License
|
||||
version 2 as published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file RF24.h
|
||||
*
|
||||
* Class declaration for RF24 and helper enums
|
||||
*/
|
||||
|
||||
#ifndef __RF24_H__
|
||||
#define __RF24_H__
|
||||
|
||||
#include <RF24_config.h>
|
||||
#include <Arduino.h>
|
||||
/**
|
||||
* Power Amplifier level.
|
||||
*
|
||||
* For use with setPALevel()
|
||||
*/
|
||||
typedef enum { RF24_PA_MIN = 0,RF24_PA_LOW, RF24_PA_HIGH, RF24_PA_MAX, RF24_PA_ERROR } rf24_pa_dbm_e ;
|
||||
|
||||
/**
|
||||
* Data rate. How fast data moves through the air.
|
||||
*
|
||||
* For use with setDataRate()
|
||||
*/
|
||||
typedef enum { RF24_1MBPS = 0, RF24_2MBPS, RF24_250KBPS } rf24_datarate_e;
|
||||
|
||||
/**
|
||||
* CRC Length. How big (if any) of a CRC is included.
|
||||
*
|
||||
* For use with setCRCLength()
|
||||
*/
|
||||
typedef enum { RF24_CRC_DISABLED = 0, RF24_CRC_8, RF24_CRC_16 } rf24_crclength_e;
|
||||
|
||||
/**
|
||||
* Driver for nRF24L01(+) 2.4GHz Wireless Transceiver
|
||||
*/
|
||||
|
||||
class RF24
|
||||
{
|
||||
private:
|
||||
uint8_t ce_pin; /**< "Chip Enable" pin, activates the RX or TX role */
|
||||
uint8_t csn_pin; /**< SPI Chip select */
|
||||
bool wide_band; /* 2Mbs data rate in use? */
|
||||
bool p_variant; /* False for RF24L01 and true for RF24L01P */
|
||||
uint8_t payload_size; /**< Fixed size of payloads */
|
||||
bool ack_payload_available; /**< Whether there is an ack payload waiting */
|
||||
bool dynamic_payloads_enabled; /**< Whether dynamic payloads are enabled. */
|
||||
uint8_t ack_payload_length; /**< Dynamic size of pending ack payload. */
|
||||
uint64_t pipe0_reading_address; /**< Last address set on pipe 0 for reading. */
|
||||
|
||||
public:
|
||||
/**
|
||||
* @name Low-level internal interface.
|
||||
*
|
||||
* Protected methods that address the chip directly. Regular users cannot
|
||||
* ever call these. They are documented for completeness and for developers who
|
||||
* may want to extend this class.
|
||||
*/
|
||||
/**@{*/
|
||||
|
||||
/**
|
||||
* Set chip select pin
|
||||
*
|
||||
* Running SPI bus at PI_CLOCK_DIV2 so we don't waste time transferring data
|
||||
* and best of all, we make use of the radio's FIFO buffers. A lower speed
|
||||
* means we're less likely to effectively leverage our FIFOs and pay a higher
|
||||
* AVR runtime cost as toll.
|
||||
*
|
||||
* @param mode HIGH to take this unit off the SPI bus, LOW to put it on
|
||||
*/
|
||||
void csn(int mode);
|
||||
|
||||
/**
|
||||
* Set chip enable
|
||||
*
|
||||
* @param level HIGH to actively begin transmission or LOW to put in standby. Please see data sheet
|
||||
* for a much more detailed description of this pin.
|
||||
*/
|
||||
void ce(int level);
|
||||
|
||||
/**
|
||||
* Read a chunk of data in from a register
|
||||
*
|
||||
* @param reg Which register. Use constants from nRF24L01.h
|
||||
* @param buf Where to put the data
|
||||
* @param len How many bytes of data to transfer
|
||||
* @return Current value of status register
|
||||
*/
|
||||
uint8_t read_register(uint8_t reg, uint8_t* buf, uint8_t len);
|
||||
|
||||
/**
|
||||
* Read single byte from a register
|
||||
*
|
||||
* @param reg Which register. Use constants from nRF24L01.h
|
||||
* @return Current value of register @p reg
|
||||
*/
|
||||
uint8_t read_register(uint8_t reg);
|
||||
|
||||
/**
|
||||
* Write a chunk of data to a register
|
||||
*
|
||||
* @param reg Which register. Use constants from nRF24L01.h
|
||||
* @param buf Where to get the data
|
||||
* @param len How many bytes of data to transfer
|
||||
* @return Current value of status register
|
||||
*/
|
||||
uint8_t write_register(uint8_t reg, const uint8_t* buf, uint8_t len);
|
||||
|
||||
/**
|
||||
* Write a single byte to a register
|
||||
*
|
||||
* @param reg Which register. Use constants from nRF24L01.h
|
||||
* @param value The new value to write
|
||||
* @return Current value of status register
|
||||
*/
|
||||
uint8_t write_register(uint8_t reg, uint8_t value);
|
||||
|
||||
/**
|
||||
* Write the transmit payload
|
||||
*
|
||||
* The size of data written is the fixed payload size, see getPayloadSize()
|
||||
*
|
||||
* @param buf Where to get the data
|
||||
* @param len Number of bytes to be sent
|
||||
* @return Current value of status register
|
||||
*/
|
||||
uint8_t write_payload(const void* buf, uint8_t len);
|
||||
|
||||
/**
|
||||
* Read the receive payload
|
||||
*
|
||||
* The size of data read is the fixed payload size, see getPayloadSize()
|
||||
*
|
||||
* @param buf Where to put the data
|
||||
* @param len Maximum number of bytes to read
|
||||
* @return Current value of status register
|
||||
*/
|
||||
uint8_t read_payload(void* buf, uint8_t len);
|
||||
|
||||
/**
|
||||
* Empty the receive buffer
|
||||
*
|
||||
* @return Current value of status register
|
||||
*/
|
||||
uint8_t flush_rx(void);
|
||||
|
||||
/**
|
||||
* Empty the transmit buffer
|
||||
*
|
||||
* @return Current value of status register
|
||||
*/
|
||||
uint8_t flush_tx(void);
|
||||
|
||||
/**
|
||||
* Retrieve the current status of the chip
|
||||
*
|
||||
* @return Current value of status register
|
||||
*/
|
||||
uint8_t get_status(void);
|
||||
|
||||
/**
|
||||
* Decode and print the given status to stdout
|
||||
*
|
||||
* @param status Status value to print
|
||||
*
|
||||
* @warning Does nothing if stdout is not defined. See fdevopen in stdio.h
|
||||
*/
|
||||
void print_status(uint8_t status);
|
||||
|
||||
/**
|
||||
* Decode and print the given 'observe_tx' value to stdout
|
||||
*
|
||||
* @param value The observe_tx value to print
|
||||
*
|
||||
* @warning Does nothing if stdout is not defined. See fdevopen in stdio.h
|
||||
*/
|
||||
void print_observe_tx(uint8_t value);
|
||||
|
||||
/**
|
||||
* Print the name and value of an 8-bit register to stdout
|
||||
*
|
||||
* Optionally it can print some quantity of successive
|
||||
* registers on the same line. This is useful for printing a group
|
||||
* of related registers on one line.
|
||||
*
|
||||
* @param name Name of the register
|
||||
* @param reg Which register. Use constants from nRF24L01.h
|
||||
* @param qty How many successive registers to print
|
||||
*/
|
||||
void print_byte_register(const char* name, uint8_t reg, uint8_t qty = 1);
|
||||
|
||||
/**
|
||||
* Print the name and value of a 40-bit address register to stdout
|
||||
*
|
||||
* Optionally it can print some quantity of successive
|
||||
* registers on the same line. This is useful for printing a group
|
||||
* of related registers on one line.
|
||||
*
|
||||
* @param name Name of the register
|
||||
* @param reg Which register. Use constants from nRF24L01.h
|
||||
* @param qty How many successive registers to print
|
||||
*/
|
||||
void print_address_register(const char* name, uint8_t reg, uint8_t qty = 1);
|
||||
|
||||
/**
|
||||
* Turn on or off the special features of the chip
|
||||
*
|
||||
* The chip has certain 'features' which are only available when the 'features'
|
||||
* are enabled. See the datasheet for details.
|
||||
*/
|
||||
void toggle_features(void);
|
||||
/**@}*/
|
||||
|
||||
//public:
|
||||
/**
|
||||
* @name Primary public interface
|
||||
*
|
||||
* These are the main methods you need to operate the chip
|
||||
*/
|
||||
/**@{*/
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
*
|
||||
* Creates a new instance of this driver. Before using, you create an instance
|
||||
* and send in the unique pins that this chip is connected to.
|
||||
*
|
||||
* @param _cepin The pin attached to Chip Enable on the RF module
|
||||
* @param _cspin The pin attached to Chip Select
|
||||
*/
|
||||
RF24(uint8_t _cepin, uint8_t _cspin);
|
||||
|
||||
/**
|
||||
* Begin operation of the chip
|
||||
*
|
||||
* Call this in setup(), before calling any other methods.
|
||||
*/
|
||||
void begin(void);
|
||||
|
||||
/**
|
||||
* Start listening on the pipes opened for reading.
|
||||
*
|
||||
* Be sure to call openReadingPipe() first. Do not call write() while
|
||||
* in this mode, without first calling stopListening(). Call
|
||||
* isAvailable() to check for incoming traffic, and read() to get it.
|
||||
*/
|
||||
void startListening(void);
|
||||
|
||||
/**
|
||||
* Stop listening for incoming messages
|
||||
*
|
||||
* Do this before calling write().
|
||||
*/
|
||||
void stopListening(void);
|
||||
|
||||
/**
|
||||
* Write to the open writing pipe
|
||||
*
|
||||
* Be sure to call openWritingPipe() first to set the destination
|
||||
* of where to write to.
|
||||
*
|
||||
* This blocks until the message is successfully acknowledged by
|
||||
* the receiver or the timeout/retransmit maxima are reached. In
|
||||
* the current configuration, the max delay here is 60ms.
|
||||
*
|
||||
* The maximum size of data written is the fixed payload size, see
|
||||
* getPayloadSize(). However, you can write less, and the remainder
|
||||
* will just be filled with zeroes.
|
||||
*
|
||||
* @param buf Pointer to the data to be sent
|
||||
* @param len Number of bytes to be sent
|
||||
* @return True if the payload was delivered successfully false if not
|
||||
*/
|
||||
bool write( const void* buf, uint8_t len );
|
||||
|
||||
/**
|
||||
* Test whether there are bytes available to be read
|
||||
*
|
||||
* @return True if there is a payload available, false if none is
|
||||
*/
|
||||
bool available(void);
|
||||
|
||||
/**
|
||||
* Read the payload
|
||||
*
|
||||
* Return the last payload received
|
||||
*
|
||||
* The size of data read is the fixed payload size, see getPayloadSize()
|
||||
*
|
||||
* @note I specifically chose 'void*' as a data type to make it easier
|
||||
* for beginners to use. No casting needed.
|
||||
*
|
||||
* @param buf Pointer to a buffer where the data should be written
|
||||
* @param len Maximum number of bytes to read into the buffer
|
||||
* @return True if the payload was delivered successfully false if not
|
||||
*/
|
||||
bool read( void* buf, uint8_t len );
|
||||
|
||||
/**
|
||||
* Open a pipe for writing
|
||||
*
|
||||
* Only one pipe can be open at once, but you can change the pipe
|
||||
* you'll listen to. Do not call this while actively listening.
|
||||
* Remember to stopListening() first.
|
||||
*
|
||||
* Addresses are 40-bit hex values, e.g.:
|
||||
*
|
||||
* @code
|
||||
* openWritingPipe(0xF0F0F0F0F0);
|
||||
* @endcode
|
||||
*
|
||||
* @param address The 40-bit address of the pipe to open. This can be
|
||||
* any value whatsoever, as long as you are the only one writing to it
|
||||
* and only one other radio is listening to it. Coordinate these pipe
|
||||
* addresses amongst nodes on the network.
|
||||
*/
|
||||
void openWritingPipe(uint64_t address);
|
||||
|
||||
/**
|
||||
* Open a pipe for reading
|
||||
*
|
||||
* Up to 6 pipes can be open for reading at once. Open all the
|
||||
* reading pipes, and then call startListening().
|
||||
*
|
||||
* @see openWritingPipe
|
||||
*
|
||||
* @warning Pipes 1-5 should share the first 32 bits.
|
||||
* Only the least significant byte should be unique, e.g.
|
||||
* @code
|
||||
* openReadingPipe(1,0xF0F0F0F0AA);
|
||||
* openReadingPipe(2,0xF0F0F0F066);
|
||||
* @endcode
|
||||
*
|
||||
* @warning Pipe 0 is also used by the writing pipe. So if you open
|
||||
* pipe 0 for reading, and then startListening(), it will overwrite the
|
||||
* writing pipe. Ergo, do an openWritingPipe() again before write().
|
||||
*
|
||||
* @todo Enforce the restriction that pipes 1-5 must share the top 32 bits
|
||||
*
|
||||
* @param number Which pipe# to open, 0-5.
|
||||
* @param address The 40-bit address of the pipe to open.
|
||||
*/
|
||||
void openReadingPipe(uint8_t number, uint64_t address);
|
||||
|
||||
/**@}*/
|
||||
/**
|
||||
* @name Optional Configurators
|
||||
*
|
||||
* Methods you can use to get or set the configuration of the chip.
|
||||
* None are required. Calling begin() sets up a reasonable set of
|
||||
* defaults.
|
||||
*/
|
||||
/**@{*/
|
||||
/**
|
||||
* Set the number and delay of retries upon failed submit
|
||||
*
|
||||
* @param delay How long to wait between each retry, in multiples of 250us,
|
||||
* max is 15. 0 means 250us, 15 means 4000us.
|
||||
* @param count How many retries before giving up, max 15
|
||||
*/
|
||||
void setRetries(uint8_t delay, uint8_t count);
|
||||
|
||||
/**
|
||||
* Set RF communication channel
|
||||
*
|
||||
* @param channel Which RF channel to communicate on, 0-127
|
||||
*/
|
||||
void setChannel(uint8_t channel);
|
||||
|
||||
/**
|
||||
* Set Static Payload Size
|
||||
*
|
||||
* This implementation uses a pre-stablished fixed payload size for all
|
||||
* transmissions. If this method is never called, the driver will always
|
||||
* transmit the maximum payload size (32 bytes), no matter how much
|
||||
* was sent to write().
|
||||
*
|
||||
* @todo Implement variable-sized payloads feature
|
||||
*
|
||||
* @param size The number of bytes in the payload
|
||||
*/
|
||||
void setPayloadSize(uint8_t size);
|
||||
|
||||
/**
|
||||
* Get Static Payload Size
|
||||
*
|
||||
* @see setPayloadSize()
|
||||
*
|
||||
* @return The number of bytes in the payload
|
||||
*/
|
||||
uint8_t getPayloadSize(void);
|
||||
|
||||
/**
|
||||
* Get Dynamic Payload Size
|
||||
*
|
||||
* For dynamic payloads, this pulls the size of the payload off
|
||||
* the chip
|
||||
*
|
||||
* @return Payload length of last-received dynamic payload
|
||||
*/
|
||||
uint8_t getDynamicPayloadSize(void);
|
||||
|
||||
/**
|
||||
* Enable custom payloads on the acknowledge packets
|
||||
*
|
||||
* Ack payloads are a handy way to return data back to senders without
|
||||
* manually changing the radio modes on both units.
|
||||
*
|
||||
* @see examples/pingpair_pl/pingpair_pl.pde
|
||||
*/
|
||||
void enableAckPayload(void);
|
||||
|
||||
/**
|
||||
* Enable dynamically-sized payloads
|
||||
*
|
||||
* This way you don't always have to send large packets just to send them
|
||||
* once in a while. This enables dynamic payloads on ALL pipes.
|
||||
*
|
||||
* @see examples/pingpair_pl/pingpair_dyn.pde
|
||||
*/
|
||||
void enableDynamicPayloads(void);
|
||||
|
||||
/**
|
||||
* Determine whether the hardware is an nRF24L01+ or not.
|
||||
*
|
||||
* @return true if the hardware is nRF24L01+ (or compatible) and false
|
||||
* if its not.
|
||||
*/
|
||||
bool isPVariant(void) ;
|
||||
|
||||
/**
|
||||
* Enable or disable auto-acknowlede packets
|
||||
*
|
||||
* This is enabled by default, so it's only needed if you want to turn
|
||||
* it off for some reason.
|
||||
*
|
||||
* @param enable Whether to enable (true) or disable (false) auto-acks
|
||||
*/
|
||||
void setAutoAck(bool enable);
|
||||
|
||||
/**
|
||||
* Enable or disable auto-acknowlede packets on a per pipeline basis.
|
||||
*
|
||||
* AA is enabled by default, so it's only needed if you want to turn
|
||||
* it off/on for some reason on a per pipeline basis.
|
||||
*
|
||||
* @param pipe Which pipeline to modify
|
||||
* @param enable Whether to enable (true) or disable (false) auto-acks
|
||||
*/
|
||||
void setAutoAck( uint8_t pipe, bool enable ) ;
|
||||
|
||||
/**
|
||||
* Set Power Amplifier (PA) level to one of four levels.
|
||||
* Relative mnemonics have been used to allow for future PA level
|
||||
* changes. According to 6.5 of the nRF24L01+ specification sheet,
|
||||
* they translate to: RF24_PA_MIN=-18dBm, RF24_PA_LOW=-12dBm,
|
||||
* RF24_PA_MED=-6dBM, and RF24_PA_HIGH=0dBm.
|
||||
*
|
||||
* @param level Desired PA level.
|
||||
*/
|
||||
void setPALevel( rf24_pa_dbm_e level ) ;
|
||||
|
||||
/**
|
||||
* Fetches the current PA level.
|
||||
*
|
||||
* @return Returns a value from the rf24_pa_dbm_e enum describing
|
||||
* the current PA setting. Please remember, all values represented
|
||||
* by the enum mnemonics are negative dBm. See setPALevel for
|
||||
* return value descriptions.
|
||||
*/
|
||||
rf24_pa_dbm_e getPALevel( void ) ;
|
||||
|
||||
/**
|
||||
* Set the transmission data rate
|
||||
*
|
||||
* @warning setting RF24_250KBPS will fail for non-plus units
|
||||
*
|
||||
* @param speed RF24_250KBPS for 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS for 2Mbps
|
||||
* @return true if the change was successful
|
||||
*/
|
||||
bool setDataRate(rf24_datarate_e speed);
|
||||
|
||||
/**
|
||||
* Fetches the transmission data rate
|
||||
*
|
||||
* @return Returns the hardware's currently configured datarate. The value
|
||||
* is one of 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS, as defined in the
|
||||
* rf24_datarate_e enum.
|
||||
*/
|
||||
rf24_datarate_e getDataRate( void ) ;
|
||||
|
||||
/**
|
||||
* Set the CRC length
|
||||
*
|
||||
* @param length RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit
|
||||
*/
|
||||
void setCRCLength(rf24_crclength_e length);
|
||||
|
||||
/**
|
||||
* Get the CRC length
|
||||
*
|
||||
* @return RF24_DISABLED if disabled or RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit
|
||||
*/
|
||||
rf24_crclength_e getCRCLength(void);
|
||||
|
||||
/**
|
||||
* Disable CRC validation
|
||||
*
|
||||
*/
|
||||
void disableCRC( void ) ;
|
||||
|
||||
/**@}*/
|
||||
/**
|
||||
* @name Advanced Operation
|
||||
*
|
||||
* Methods you can use to drive the chip in more advanced ways
|
||||
*/
|
||||
/**@{*/
|
||||
|
||||
/**
|
||||
* Print a giant block of debugging information to stdout
|
||||
*
|
||||
* @warning Does nothing if stdout is not defined. See fdevopen in stdio.h
|
||||
*/
|
||||
void printDetails(void);
|
||||
|
||||
/**
|
||||
* Enter low-power mode
|
||||
*
|
||||
* To return to normal power mode, either write() some data or
|
||||
* startListening, or powerUp().
|
||||
*/
|
||||
void powerDown(void);
|
||||
|
||||
/**
|
||||
* Leave low-power mode - making radio more responsive
|
||||
*
|
||||
* To return to low power mode, call powerDown().
|
||||
*/
|
||||
void powerUp(void) ;
|
||||
|
||||
/**
|
||||
* Test whether there are bytes available to be read
|
||||
*
|
||||
* Use this version to discover on which pipe the message
|
||||
* arrived.
|
||||
*
|
||||
* @param[out] pipe_num Which pipe has the payload available
|
||||
* @return True if there is a payload available, false if none is
|
||||
*/
|
||||
bool available(uint8_t* pipe_num);
|
||||
|
||||
/**
|
||||
* Non-blocking write to the open writing pipe
|
||||
*
|
||||
* Just like write(), but it returns immediately. To find out what happened
|
||||
* to the send, catch the IRQ and then call whatHappened().
|
||||
*
|
||||
* @see write()
|
||||
* @see whatHappened()
|
||||
*
|
||||
* @param buf Pointer to the data to be sent
|
||||
* @param len Number of bytes to be sent
|
||||
* @return True if the payload was delivered successfully false if not
|
||||
*/
|
||||
void startWrite( const void* buf, uint8_t len );
|
||||
|
||||
/**
|
||||
* Write an ack payload for the specified pipe
|
||||
*
|
||||
* The next time a message is received on @p pipe, the data in @p buf will
|
||||
* be sent back in the acknowledgement.
|
||||
*
|
||||
* @warning According to the data sheet, only three of these can be pending
|
||||
* at any time. I have not tested this.
|
||||
*
|
||||
* @param pipe Which pipe# (typically 1-5) will get this response.
|
||||
* @param buf Pointer to data that is sent
|
||||
* @param len Length of the data to send, up to 32 bytes max. Not affected
|
||||
* by the static payload set by setPayloadSize().
|
||||
*/
|
||||
void writeAckPayload(uint8_t pipe, const void* buf, uint8_t len);
|
||||
|
||||
/**
|
||||
* Determine if an ack payload was received in the most recent call to
|
||||
* write().
|
||||
*
|
||||
* Call read() to retrieve the ack payload.
|
||||
*
|
||||
* @warning Calling this function clears the internal flag which indicates
|
||||
* a payload is available. If it returns true, you must read the packet
|
||||
* out as the very next interaction with the radio, or the results are
|
||||
* undefined.
|
||||
*
|
||||
* @return True if an ack payload is available.
|
||||
*/
|
||||
bool isAckPayloadAvailable(void);
|
||||
|
||||
/**
|
||||
* Call this when you get an interrupt to find out why
|
||||
*
|
||||
* Tells you what caused the interrupt, and clears the state of
|
||||
* interrupts.
|
||||
*
|
||||
* @param[out] tx_ok The send was successful (TX_DS)
|
||||
* @param[out] tx_fail The send failed, too many retries (MAX_RT)
|
||||
* @param[out] rx_ready There is a message waiting to be read (RX_DS)
|
||||
*/
|
||||
void whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready);
|
||||
|
||||
/**
|
||||
* Test whether there was a carrier on the line for the
|
||||
* previous listening period.
|
||||
*
|
||||
* Useful to check for interference on the current channel.
|
||||
*
|
||||
* @return true if was carrier, false if not
|
||||
*/
|
||||
bool testCarrier(void);
|
||||
|
||||
/**
|
||||
* Test whether a signal (carrier or otherwise) greater than
|
||||
* or equal to -64dBm is present on the channel. Valid only
|
||||
* on nRF24L01P (+) hardware. On nRF24L01, use testCarrier().
|
||||
*
|
||||
* Useful to check for interference on the current channel and
|
||||
* channel hopping strategies.
|
||||
*
|
||||
* @return true if signal => -64dBm, false if not
|
||||
*/
|
||||
bool testRPD(void) ;
|
||||
|
||||
/**
|
||||
* Test whether this is a real radio, or a mock shim for
|
||||
* debugging. Setting either pin to 0xff is the way to
|
||||
* indicate that this is not a real radio.
|
||||
*
|
||||
* @return true if this is a legitimate radio
|
||||
*/
|
||||
bool isValid() { return ce_pin != 0xff && csn_pin != 0xff; }
|
||||
|
||||
/**@}*/
|
||||
};
|
||||
|
||||
/**
|
||||
* @example GettingStarted.pde
|
||||
*
|
||||
* This is an example which corresponds to my "Getting Started" blog post:
|
||||
* <a style="text-align:center" href="http://maniacbug.wordpress.com/2011/11/02/getting-started-rf24/">Getting Started with nRF24L01+ on Arduino</a>.
|
||||
*
|
||||
* It is an example of how to use the RF24 class. Write this sketch to two
|
||||
* different nodes. Put one of the nodes into 'transmit' mode by connecting
|
||||
* with the serial monitor and sending a 'T'. The ping node sends the current
|
||||
* time to the pong node, which responds by sending the value back. The ping
|
||||
* node can then see how long the whole cycle took.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @example nordic_fob.pde
|
||||
*
|
||||
* This is an example of how to use the RF24 class to receive signals from the
|
||||
* Sparkfun Nordic FOB. See http://www.sparkfun.com/products/8602 .
|
||||
* Thanks to Kirk Mower for providing test hardware.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @example led_remote.pde
|
||||
*
|
||||
* This is an example of how to use the RF24 class to control a remote
|
||||
* bank of LED's using buttons on a remote control.
|
||||
*
|
||||
* Every time the buttons change on the remote, the entire state of
|
||||
* buttons is send to the led board, which displays the state.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @example pingpair.pde
|
||||
*
|
||||
* This is an example of how to use the RF24 class. Write this sketch to two
|
||||
* different nodes, connect the role_pin to ground on one. The ping node sends
|
||||
* the current time to the pong node, which responds by sending the value back.
|
||||
* The ping node can then see how long the whole cycle took.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @example pingpair_maple.pde
|
||||
*
|
||||
* This is an example of how to use the RF24 class on the Maple. For a more
|
||||
* detailed explanation, see my blog post:
|
||||
* <a href="http://maniacbug.wordpress.com/2011/12/14/nrf24l01-running-on-maple-3/">nRF24L01+ Running on Maple</a>
|
||||
*
|
||||
* It will communicate well to an Arduino-based unit as well, so it's not for only Maple-to-Maple communication.
|
||||
*
|
||||
* Write this sketch to two different nodes,
|
||||
* connect the role_pin to ground on one. The ping node sends the current time to the pong node,
|
||||
* which responds by sending the value back. The ping node can then see how long the whole cycle
|
||||
* took.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @example starping.pde
|
||||
*
|
||||
* This sketch is a more complex example of using the RF24 library for Arduino.
|
||||
* Deploy this on up to six nodes. Set one as the 'pong receiver' by tying the
|
||||
* role_pin low, and the others will be 'ping transmit' units. The ping units
|
||||
* unit will send out the value of millis() once a second. The pong unit will
|
||||
* respond back with a copy of the value. Each ping unit can get that response
|
||||
* back, and determine how long the whole cycle took.
|
||||
*
|
||||
* This example requires a bit more complexity to determine which unit is which.
|
||||
* The pong receiver is identified by having its role_pin tied to ground.
|
||||
* The ping senders are further differentiated by a byte in eeprom.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @example pingpair_pl.pde
|
||||
*
|
||||
* This is an example of how to do two-way communication without changing
|
||||
* transmit/receive modes. Here, a payload is set to the transmitter within
|
||||
* the Ack packet of each transmission. Note that the payload is set BEFORE
|
||||
* the sender's message arrives.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @example pingpair_irq.pde
|
||||
*
|
||||
* This is an example of how to user interrupts to interact with the radio.
|
||||
* It builds on the pingpair_pl example, and uses ack payloads.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @example pingpair_sleepy.pde
|
||||
*
|
||||
* This is an example of how to use the RF24 class to create a battery-
|
||||
* efficient system. It is just like the pingpair.pde example, but the
|
||||
* ping node powers down the radio and sleeps the MCU after every
|
||||
* ping/pong cycle.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @example scanner.pde
|
||||
*
|
||||
* Example to detect interference on the various channels available.
|
||||
* This is a good diagnostic tool to check whether you're picking a
|
||||
* good channel for your application.
|
||||
*
|
||||
* Inspired by cpixip.
|
||||
* See http://arduino.cc/forum/index.php/topic,54795.0.html
|
||||
*/
|
||||
|
||||
/**
|
||||
* @mainpage Driver for nRF24L01(+) 2.4GHz Wireless Transceiver
|
||||
*
|
||||
* @section Goals Design Goals
|
||||
*
|
||||
* This library is designed to be...
|
||||
* @li Maximally compliant with the intended operation of the chip
|
||||
* @li Easy for beginners to use
|
||||
* @li Consumed with a public interface that's similiar to other Arduino standard libraries
|
||||
*
|
||||
* @section News News
|
||||
*
|
||||
* NOW COMPATIBLE WITH ARDUINO 1.0 - The 'master' branch and all examples work with both Arduino 1.0 and earlier versions.
|
||||
* Please <a href="https://github.com/maniacbug/RF24/issues/new">open an issue</a> if you find any problems using it with any version of Arduino.
|
||||
*
|
||||
* NOW COMPATIBLE WITH MAPLE - RF24 has been tested with the
|
||||
* <a href="http://leaflabs.com/store/#Maple-Native">Maple Native</a>,
|
||||
* and should work with any Maple board. See the pingpair_maple example.
|
||||
* Note that only the pingpair_maple example has been tested on Maple, although
|
||||
* the others can certainly be adapted.
|
||||
*
|
||||
* @section Useful Useful References
|
||||
*
|
||||
* Please refer to:
|
||||
*
|
||||
* @li <a href="http://maniacbug.github.com/RF24/">Documentation Main Page</a>
|
||||
* @li <a href="http://maniacbug.github.com/RF24/classRF24.html">RF24 Class Documentation</a>
|
||||
* @li <a href="https://github.com/maniacbug/RF24/">Source Code</a>
|
||||
* @li <a href="https://github.com/maniacbug/RF24/archives/master">Downloads Page</a>
|
||||
* @li <a href="http://www.nordicsemi.com/files/Product/data_sheet/nRF24L01_Product_Specification_v2_0.pdf">Chip Datasheet</a>
|
||||
*
|
||||
* This chip uses the SPI bus, plus two chip control pins. Remember that pin 10 must still remain an output, or
|
||||
* the SPI hardware will go into 'slave' mode.
|
||||
*
|
||||
* @section More More Information
|
||||
*
|
||||
* @subpage FAQ
|
||||
*
|
||||
* @section Projects Projects
|
||||
*
|
||||
* Stuff I have built with RF24
|
||||
*
|
||||
* <img src="http://farm7.staticflickr.com/6044/6307669179_a8d19298a6_m.jpg" width="240" height="160" alt="RF24 Getting Started - Finished Product">
|
||||
*
|
||||
* <a style="text-align:center" href="http://maniacbug.wordpress.com/2011/11/02/getting-started-rf24/">Getting Started with nRF24L01+ on Arduino</a>
|
||||
*
|
||||
* <img src="http://farm8.staticflickr.com/7159/6645514331_38eb2bdeaa_m.jpg" width="240" height="160" alt="Nordic FOB and nRF24L01+">
|
||||
*
|
||||
* <a style="text-align:center" href="http://maniacbug.wordpress.com/2012/01/08/nordic-fob/">Using the Sparkfun Nordic FOB</a>
|
||||
*
|
||||
* <img src="http://farm7.staticflickr.com/6097/6224308836_b9b3b421a3_m.jpg" width="240" height="160" alt="RF Duinode V3 (2V4)">
|
||||
*
|
||||
* <a href="http://maniacbug.wordpress.com/2011/10/19/sensor-node/">Low-Power Wireless Sensor Node</a>
|
||||
*
|
||||
* <img src="http://farm8.staticflickr.com/7012/6489477865_b56edb629b_m.jpg" width="240" height="161" alt="nRF24L01+ connected to Leaf Labs Maple Native">
|
||||
*
|
||||
* <a href="http://maniacbug.wordpress.com/2011/12/14/nrf24l01-running-on-maple-3/">nRF24L01+ Running on Maple</a>
|
||||
*/
|
||||
|
||||
#endif // __RF24_H__
|
||||
// vim:ai:cin:sts=2 sw=2 ft=cpp
|
||||
|
@ -0,0 +1,65 @@
|
||||
|
||||
/*
|
||||
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
|
||||
|
||||
This program is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License
|
||||
version 2 as published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#ifndef __RF24_CONFIG_H__
|
||||
#define __RF24_CONFIG_H__
|
||||
|
||||
//#if ARDUINO < 100
|
||||
//#include <WProgram.h>
|
||||
//#else
|
||||
#include <Arduino.h>
|
||||
//#endif
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
// Stuff that is normally provided by Arduino
|
||||
#ifdef ARDUINO
|
||||
#include <SPI.h>
|
||||
#else
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
extern HardwareSPI SPI;
|
||||
#define _BV(x) (1<<(x))
|
||||
#endif
|
||||
|
||||
#undef SERIAL_DEBUG
|
||||
#ifdef SERIAL_DEBUG
|
||||
#define IF_SERIAL_DEBUG(x) ({x;})
|
||||
#else
|
||||
#define IF_SERIAL_DEBUG(x)
|
||||
#endif
|
||||
|
||||
// Avoid spurious warnings
|
||||
#if 1
|
||||
#if ! defined( NATIVE ) && defined( ARDUINO )
|
||||
#undef PROGMEM
|
||||
#define PROGMEM __attribute__(( section(".progmem.data") ))
|
||||
#undef PSTR
|
||||
#define PSTR(s) (__extension__({static const char __c[] PROGMEM = (s); &__c[0];}))
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Progmem is Arduino-specific
|
||||
#ifdef ARDUINO
|
||||
#include <avr/pgmspace.h>
|
||||
#define PRIPSTR "%S"
|
||||
#else
|
||||
typedef char const char;
|
||||
typedef uint16_t prog_uint16_t;
|
||||
#define PSTR(x) (x)
|
||||
#define printf_P printf
|
||||
#define strlen_P strlen
|
||||
#define PROGMEM
|
||||
#define pgm_read_word(p) (*(p))
|
||||
#define PRIPSTR "%s"
|
||||
#endif
|
||||
|
||||
#endif // __RF24_CONFIG_H__
|
||||
// vim:ai:cin:sts=2 sw=2 ft=cpp
|
@ -0,0 +1,125 @@
|
||||
/*
|
||||
Copyright (c) 2007 Stefan Engelke <mbox@stefanengelke.de>
|
||||
|
||||
Permission is hereby granted, free of charge, to any person
|
||||
obtaining a copy of this software and associated documentation
|
||||
files (the "Software"), to deal in the Software without
|
||||
restriction, including without limitation the rights to use, copy,
|
||||
modify, merge, publish, distribute, sublicense, and/or sell copies
|
||||
of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be
|
||||
included in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
||||
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
||||
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
DEALINGS IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
/* Memory Map */
|
||||
#define CONFIG 0x00
|
||||
#define EN_AA 0x01
|
||||
#define EN_RXADDR 0x02
|
||||
#define SETUP_AW 0x03
|
||||
#define SETUP_RETR 0x04
|
||||
#define RF_CH 0x05
|
||||
#define RF_SETUP 0x06
|
||||
#define STATUS 0x07
|
||||
#define OBSERVE_TX 0x08
|
||||
#define CD 0x09
|
||||
#define RX_ADDR_P0 0x0A
|
||||
#define RX_ADDR_P1 0x0B
|
||||
#define RX_ADDR_P2 0x0C
|
||||
#define RX_ADDR_P3 0x0D
|
||||
#define RX_ADDR_P4 0x0E
|
||||
#define RX_ADDR_P5 0x0F
|
||||
#define TX_ADDR 0x10
|
||||
#define RX_PW_P0 0x11
|
||||
#define RX_PW_P1 0x12
|
||||
#define RX_PW_P2 0x13
|
||||
#define RX_PW_P3 0x14
|
||||
#define RX_PW_P4 0x15
|
||||
#define RX_PW_P5 0x16
|
||||
#define FIFO_STATUS 0x17
|
||||
#define DYNPD 0x1C
|
||||
#define FEATURE 0x1D
|
||||
|
||||
/* Bit Mnemonics */
|
||||
#define MASK_RX_DR 6
|
||||
#define MASK_TX_DS 5
|
||||
#define MASK_MAX_RT 4
|
||||
#define EN_CRC 3
|
||||
#define CRCO 2
|
||||
#define PWR_UP 1
|
||||
#define PRIM_RX 0
|
||||
#define ENAA_P5 5
|
||||
#define ENAA_P4 4
|
||||
#define ENAA_P3 3
|
||||
#define ENAA_P2 2
|
||||
#define ENAA_P1 1
|
||||
#define ENAA_P0 0
|
||||
#define ERX_P5 5
|
||||
#define ERX_P4 4
|
||||
#define ERX_P3 3
|
||||
#define ERX_P2 2
|
||||
#define ERX_P1 1
|
||||
#define ERX_P0 0
|
||||
#define AW 0
|
||||
#define ARD 4
|
||||
#define ARC 0
|
||||
#define PLL_LOCK 4
|
||||
#define RF_DR 3
|
||||
#define RF_PWR 6
|
||||
#define RX_DR 6
|
||||
#define TX_DS 5
|
||||
#define MAX_RT 4
|
||||
#define RX_P_NO 1
|
||||
#define TX_FULL 0
|
||||
#define PLOS_CNT 4
|
||||
#define ARC_CNT 0
|
||||
#define TX_REUSE 6
|
||||
#define FIFO_FULL 5
|
||||
#define TX_EMPTY 4
|
||||
#define RX_FULL 1
|
||||
#define RX_EMPTY 0
|
||||
#define DPL_P5 5
|
||||
#define DPL_P4 4
|
||||
#define DPL_P3 3
|
||||
#define DPL_P2 2
|
||||
#define DPL_P1 1
|
||||
#define DPL_P0 0
|
||||
#define EN_DPL 2
|
||||
#define EN_ACK_PAY 1
|
||||
#define EN_DYN_ACK 0
|
||||
|
||||
/* Instruction Mnemonics */
|
||||
#define R_REGISTER 0x00
|
||||
#define W_REGISTER 0x20
|
||||
#define REGISTER_MASK 0x1F
|
||||
#define ACTIVATE 0x50
|
||||
#define R_RX_PL_WID 0x60
|
||||
#define R_RX_PAYLOAD 0x61
|
||||
#define W_TX_PAYLOAD 0xA0
|
||||
#define W_ACK_PAYLOAD 0xA8
|
||||
#define FLUSH_TX 0xE1
|
||||
#define FLUSH_RX 0xE2
|
||||
#define REUSE_TX_PL 0xE3
|
||||
#define NOP 0xFF
|
||||
|
||||
/* Non-P omissions */
|
||||
#define LNA_HCURR 0
|
||||
|
||||
/* P model memory Map */
|
||||
#define RPD 0x09
|
||||
|
||||
/* P model bit Mnemonics */
|
||||
#define RF_DR_LOW 5
|
||||
#define RF_DR_HIGH 3
|
||||
#define RF_PWR_LOW 1
|
||||
#define RF_PWR_HIGH 2
|
Loading…
Reference in new issue