You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

670 lines
18 KiB

#include <OpenCL.h>
#include "util.hpp"
void OpenCL::run_kernel(std::string kernel_name) {
size_t global_work_size[2] = { static_cast<size_t>(viewport_resolution.x), static_cast<size_t>(viewport_resolution.y) };
cl_kernel kernel = kernel_map.at(kernel_name);
error = clEnqueueAcquireGLObjects(command_queue, 1, &buffer_map.at("viewport_image"), 0, 0, 0);
if (vr_assert(error, "clEnqueueAcquireGLObjects"))
return;
//error = clEnqueueTask(command_queue, kernel, 0, NULL, NULL);
error = clEnqueueNDRangeKernel(
command_queue, kernel,
2, NULL, global_work_size,
NULL, 0, NULL, NULL);
if (vr_assert(error, "clEnqueueNDRangeKernel"))
return;
clFinish(command_queue);
// What if errors out and gl objects are never released?
error = clEnqueueReleaseGLObjects(command_queue, 1, &buffer_map.at("viewport_image"), 0, NULL, NULL);
if (vr_assert(error, "clEnqueueReleaseGLObjects"))
return;
}
void OpenCL::draw(sf::RenderWindow *window) {
window->draw(viewport_sprite);
}
void OpenCL::aquire_hardware() {
// Get the number of platforms
cl_uint plt_cnt = 0;
clGetPlatformIDs(0, nullptr, &plt_cnt);
// Fetch the platforms
std::map<cl_platform_id, std::vector<device>> plt_ids;
// buffer before map init
std::vector<cl_platform_id> plt_buf(plt_cnt);
clGetPlatformIDs(plt_cnt, plt_buf.data(), nullptr);
// Map init
for (auto id : plt_buf) {
plt_ids.emplace(std::make_pair(id, std::vector<device>()));
}
// For each platform, populate its devices
for (unsigned int i = 0; i < plt_cnt; i++) {
cl_uint deviceIdCount = 0;
error = clGetDeviceIDs(plt_buf[i], CL_DEVICE_TYPE_ALL, 0, nullptr, &deviceIdCount);
// Check to see if we even have OpenCL on this machine
if (deviceIdCount == 0) {
std::cout << "There appears to be no devices, or none at least supporting OpenCL" << std::endl;
return;
}
// Get the device ids
std::vector<cl_device_id> deviceIds(deviceIdCount);
error = clGetDeviceIDs(plt_buf[i], CL_DEVICE_TYPE_ALL, deviceIdCount, deviceIds.data(), NULL);
if (vr_assert(error, "clGetDeviceIDs"))
return;
for (unsigned int q = 0; q < deviceIdCount; q++) {
device d;
d.id = deviceIds[q];
clGetDeviceInfo(d.id, CL_DEVICE_PLATFORM, sizeof(cl_platform_id), &d.platform, NULL);
clGetDeviceInfo(d.id, CL_DEVICE_VERSION, sizeof(char) * 128, &d.version, NULL);
clGetDeviceInfo(d.id, CL_DEVICE_TYPE, sizeof(cl_device_type), &d.type, NULL);
clGetDeviceInfo(d.id, CL_DEVICE_MAX_CLOCK_FREQUENCY, sizeof(cl_uint), &d.clock_frequency, NULL);
clGetDeviceInfo(d.id, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(cl_uint), &d.comp_units, NULL);
clGetDeviceInfo(d.id, CL_DEVICE_EXTENSIONS, 1024, &d.extensions, NULL);
clGetDeviceInfo(d.id, CL_DEVICE_NAME, 256, &d.name, NULL);
clGetDeviceInfo(d.id, CL_DEVICE_ENDIAN_LITTLE, sizeof(cl_bool), &d.is_little_endian, NULL);
std::cout << "Device: " << q << std::endl;
std::cout << "Device Name : " << d.name << std::endl;
std::cout << "Platform ID : " << d.platform << std::endl;
std::cout << "Device Version : " << d.version << std::endl;
std::cout << "Device Type : ";
if (d.type == CL_DEVICE_TYPE_CPU)
std::cout << "CPU" << std::endl;
else if (d.type == CL_DEVICE_TYPE_GPU)
std::cout << "GPU" << std::endl;
else if (d.type == CL_DEVICE_TYPE_ACCELERATOR)
std::cout << "Accelerator" << std::endl;
std::cout << "Max clock frequency : " << d.clock_frequency << std::endl;
std::cout << "Max compute units : " << d.comp_units << std::endl;
std::cout << "Is little endian : " << std::boolalpha << static_cast<bool>(d.is_little_endian) << std::endl;
std::cout << "cl_khr_gl_sharing supported: ";
if (std::string(d.extensions).find("cl_khr_gl_sharing") == std::string::npos &&
std::string(d.extensions).find("cl_APPLE_gl_sharing") == std::string::npos) {
std::cout << "False" << std::endl;
}
std::cout << "True" << std::endl;
d.cl_gl_sharing = true;
std::cout << "Extensions supported: " << std::endl;
std::cout << std::string(d.extensions) << std::endl;
std::cout << " ===================================================================================== " << std::endl;
plt_ids.at(d.platform).push_back(d);
}
}
// The devices how now been queried we want to shoot for a gpu with the fastest clock,
// falling back to the cpu with the fastest clock if we weren't able to find one
device current_best_device;
current_best_device.type = 0; // Set this to 0 so the first run always selects a new device
current_best_device.clock_frequency = 0;
current_best_device.comp_units = 0;
for (auto kvp : plt_ids) {
for (auto device : kvp.second) {
// Gonna just split this up into cases. There are so many devices I cant test with
// that opencl supports. I'm not going to waste my time making a generic implimentation
// Upon success of a condition, set the current best device values
//if (strcmp(device.version, "OpenCL 1.2 ") == 0 && strcmp(device.version, current_best_device.version) != 0) {
// current_best_device = device;
//}
// If the current device is not a GPU and we are comparing it to a GPU
if (device.type == CL_DEVICE_TYPE_GPU && current_best_device.type != CL_DEVICE_TYPE_GPU) {
current_best_device = device;
}
//if (device.type == CL_DEVICE_TYPE_CPU &&
// current_best_device.type != CL_DEVICE_TYPE_CPU) {
// current_best_device = device;
//}
// Get the unit with the higher compute units
if (device.comp_units > current_best_device.comp_units) {
current_best_device = device;
}
// If we are comparing CPU to CPU get the one with the best clock
if (current_best_device.type != CL_DEVICE_TYPE_GPU && device.clock_frequency > current_best_device.clock_frequency) {
current_best_device = device;
}
if (current_best_device.cl_gl_sharing == false && device.cl_gl_sharing == true) {
current_best_device = device;
}
}
}
platform_id = current_best_device.platform;
device_id = current_best_device.id;
std::cout << std::endl;
std::cout << "Selected Platform : " << platform_id << std::endl;
std::cout << "Selected Device : " << device_id << std::endl;
std::cout << "Selected Name : " << current_best_device.name << std::endl;
std::cout << "Selected Version : " << current_best_device.version << std::endl;
if (current_best_device.cl_gl_sharing == false) {
std::cout << "This device does not support the cl_khr_gl_sharing extension" << std::endl;
return;
}
}
void OpenCL::create_shared_context() {
// Hurray for standards!
// Setup the context properties to grab the current GL context
#ifdef linux
cl_context_properties context_properties[] = {
CL_GL_CONTEXT_KHR, (cl_context_properties)glXGetCurrentContext(),
CL_GLX_DISPLAY_KHR, (cl_context_properties)glXGetCurrentDisplay(),
CL_CONTEXT_PLATFORM, (cl_context_properties)platform_id,
0
};
#elif defined _WIN32
HGLRC hGLRC = wglGetCurrentContext();
HDC hDC = wglGetCurrentDC();
cl_context_properties context_properties[] = {
CL_CONTEXT_PLATFORM, (cl_context_properties)platform_id,
CL_GL_CONTEXT_KHR, (cl_context_properties)hGLRC,
CL_WGL_HDC_KHR, (cl_context_properties)hDC,
0
};
#elif defined TARGET_OS_MAC
CGLContextObj glContext = CGLGetCurrentContext();
CGLShareGroupObj shareGroup = CGLGetShareGroup(glContext);
cl_context_properties context_properties[] = {
CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE,
(cl_context_properties)shareGroup,
0
};
#endif
// Create our shared context
context = clCreateContext(
context_properties,
1,
&device_id,
nullptr, nullptr,
&error
);
if (vr_assert(error, "clCreateContext"))
return;
}
void OpenCL::create_command_queue() {
// If context and device_id have initialized
if (context && device_id) {
command_queue = clCreateCommandQueue(context, device_id, 0, &error);
if (vr_assert(error, "clCreateCommandQueue"))
return;
return;
}
else {
std::cout << "Failed creating the command queue. Context or device_id not initialized";
return;
}
}
bool OpenCL::compile_kernel(std::string kernel_path, std::string kernel_name) {
const char* source;
std::string tmp;
//Load in the kernel, and c stringify it
tmp = read_file(kernel_path);
source = tmp.c_str();
size_t kernel_source_size = strlen(source);
// Load the source into CL's data structure
cl_program program = clCreateProgramWithSource(
context, 1,
&source,
&kernel_source_size, &error
);
// This is not for compilation, it only loads the source
if (vr_assert(error, "clCreateProgramWithSource"))
return false;
// Try and build the program
// "-cl-finite-math-only -cl-fast-relaxed-math -cl-unsafe-math-optimizations"
error = clBuildProgram(program, 1, &device_id, "-cl-finite-math-only -cl-fast-relaxed-math -cl-unsafe-math-optimizations", NULL, NULL);
// Check to see if it errored out
if (vr_assert(error, "clBuildProgram")) {
// Get the size of the queued log
size_t log_size;
clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
char *log = new char[log_size];
// Grab the log
clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, log_size, log, NULL);
std::cout << log;
return false;
}
// Done initializing the kernel
cl_kernel kernel = clCreateKernel(program, kernel_name.c_str(), &error);
if (vr_assert(error, "clCreateKernel"))
return false;
// Do I want these to overlap when repeated??
kernel_map[kernel_name] = kernel;
return true;
}
int OpenCL::create_image_buffer(std::string buffer_name, cl_uint size, sf::Texture* texture, cl_int access_type) {
if (buffer_map.count(buffer_name) > 0) {
release_buffer(buffer_name);
}
int error;
cl_mem buff = clCreateFromGLTexture(
context, access_type, GL_TEXTURE_2D,
0, texture->getNativeHandle(), &error);
if (vr_assert(error, "clCreateFromGLTexture"))
return 1;
store_buffer(buff, buffer_name);
return 1;
}
int OpenCL::create_buffer(std::string buffer_name, cl_uint size, void* data) {
if (buffer_map.count(buffer_name) > 0) {
release_buffer(buffer_name);
}
cl_mem buff = clCreateBuffer(
context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
size, data, &error
);
if (vr_assert(error, "clCreateBuffer"))
return -1;
store_buffer(buff, buffer_name);
return 1;
}
int OpenCL::create_buffer(std::string buffer_name, cl_uint size, void* data, cl_mem_flags flags) {
if (buffer_map.count(buffer_name) > 0) {
release_buffer(buffer_name);
}
cl_mem buff = clCreateBuffer(
context, flags,
size, data, &error
);
if (vr_assert(error, "clCreateBuffer"))
return -1;
store_buffer(buff, buffer_name);
return 1;
}
int OpenCL::store_buffer(cl_mem buffer, std::string buffer_name) {
if (buffer_map.count(buffer_name)) {
clReleaseMemObject(buffer_map[buffer_name]);
}
buffer_map[buffer_name] = buffer;
return 1;
}
int OpenCL::release_buffer(std::string buffer_name) {
if (buffer_map.count(buffer_name) > 0) {
int error = clReleaseMemObject(buffer_map.at(buffer_name));
if (vr_assert(error, "clReleaseMemObject")) {
std::cout << "Error releasing buffer : " << buffer_name;
std::cout << "Buffer not removed";
return -1;
}
else {
buffer_map.erase(buffer_name);
}
}
else {
std::cout << "Error releasing buffer : " << buffer_name;
std::cout << "Buffer not found";
return -1;
}
return 1;
}
void OpenCL::assign_kernel_args() {
}
int OpenCL::set_kernel_arg(std::string kernel_name, int index, std::string buffer_name) {
error = clSetKernelArg(
kernel_map.at(kernel_name),
index,
sizeof(cl_mem),
(void *)&buffer_map.at(buffer_name));
if (vr_assert(error, "clSetKernelArg")) {
std::cout << buffer_name << std::endl;
std::cout << buffer_map.at(buffer_name) << std::endl;
return -1;
}
return 1;
}
OpenCL::OpenCL(sf::Vector2i resolution) : viewport_resolution(resolution){
viewport_texture.create(viewport_resolution.x, viewport_resolution.y);
viewport_sprite.setTexture(viewport_texture);
}
OpenCL::~OpenCL() {
}
bool OpenCL::init() {
// Initialize opencl up to the point where we start assigning buffers
aquire_hardware();
create_shared_context();
create_command_queue();
while (!compile_kernel("../kernels/mandlebrot.cl", "mandlebrot")) {
std::cin.get();
}
create_image_buffer("viewport_image", viewport_texture.getSize().x * viewport_texture.getSize().x * 4 * sizeof(float), &viewport_texture, CL_MEM_WRITE_ONLY);
create_buffer("image_res", sizeof(sf::Vector2i), &viewport_resolution);
sf::Vector4i range(-1.0f, 1.0f, -1.0f, 1.0f);
create_buffer("range", sizeof(sf::Vector4i), &range);
set_kernel_arg("mandlebrot", 0, "image_res");
set_kernel_arg("mandlebrot", 1, "viewport_image");
set_kernel_arg("mandlebrot", 2, "range");
return true;
}
bool OpenCL::vr_assert(int error_code, std::string function_name) {
// Just gonna do a little jump table here, just error codes so who cares
std::string err_msg = "Error : ";
switch (error_code) {
case CL_SUCCESS:
return false;
case 1:
return false;
case CL_DEVICE_NOT_FOUND:
err_msg += "CL_DEVICE_NOT_FOUND";
break;
case CL_DEVICE_NOT_AVAILABLE:
err_msg = "CL_DEVICE_NOT_AVAILABLE";
break;
case CL_COMPILER_NOT_AVAILABLE:
err_msg = "CL_COMPILER_NOT_AVAILABLE";
break;
case CL_MEM_OBJECT_ALLOCATION_FAILURE:
err_msg = "CL_MEM_OBJECT_ALLOCATION_FAILURE";
break;
case CL_OUT_OF_RESOURCES:
err_msg = "CL_OUT_OF_RESOURCES";
break;
case CL_OUT_OF_HOST_MEMORY:
err_msg = "CL_OUT_OF_HOST_MEMORY";
break;
case CL_PROFILING_INFO_NOT_AVAILABLE:
err_msg = "CL_PROFILING_INFO_NOT_AVAILABLE";
break;
case CL_MEM_COPY_OVERLAP:
err_msg = "CL_MEM_COPY_OVERLAP";
break;
case CL_IMAGE_FORMAT_MISMATCH:
err_msg = "CL_IMAGE_FORMAT_MISMATCH";
break;
case CL_IMAGE_FORMAT_NOT_SUPPORTED:
err_msg = "CL_IMAGE_FORMAT_NOT_SUPPORTED";
break;
case CL_BUILD_PROGRAM_FAILURE:
err_msg = "CL_BUILD_PROGRAM_FAILURE";
break;
case CL_MAP_FAILURE:
err_msg = "CL_MAP_FAILURE";
break;
case CL_MISALIGNED_SUB_BUFFER_OFFSET:
err_msg = "CL_MISALIGNED_SUB_BUFFER_OFFSET";
break;
case CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST:
err_msg = "CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST";
break;
case CL_COMPILE_PROGRAM_FAILURE:
err_msg = "CL_COMPILE_PROGRAM_FAILURE";
break;
case CL_LINKER_NOT_AVAILABLE:
err_msg = "CL_LINKER_NOT_AVAILABLE";
break;
case CL_LINK_PROGRAM_FAILURE:
err_msg = "CL_LINK_PROGRAM_FAILURE";
break;
case CL_DEVICE_PARTITION_FAILED:
err_msg = "CL_DEVICE_PARTITION_FAILED";
break;
case CL_KERNEL_ARG_INFO_NOT_AVAILABLE:
err_msg = "CL_KERNEL_ARG_INFO_NOT_AVAILABLE";
break;
case CL_INVALID_VALUE:
err_msg = "CL_INVALID_VALUE";
break;
case CL_INVALID_DEVICE_TYPE:
err_msg = "CL_INVALID_DEVICE_TYPE";
break;
case CL_INVALID_PLATFORM:
err_msg = "CL_INVALID_PLATFORM";
break;
case CL_INVALID_DEVICE:
err_msg = "CL_INVALID_DEVICE";
break;
case CL_INVALID_CONTEXT:
err_msg = "CL_INVALID_CONTEXT";
break;
case CL_INVALID_QUEUE_PROPERTIES:
err_msg = "CL_INVALID_QUEUE_PROPERTIES";
break;
case CL_INVALID_COMMAND_QUEUE:
err_msg = "CL_INVALID_COMMAND_QUEUE";
break;
case CL_INVALID_HOST_PTR:
err_msg = "CL_INVALID_HOST_PTR";
break;
case CL_INVALID_MEM_OBJECT:
err_msg = "CL_INVALID_MEM_OBJECT";
break;
case CL_INVALID_IMAGE_FORMAT_DESCRIPTOR:
err_msg = "CL_INVALID_IMAGE_FORMAT_DESCRIPTOR";
break;
case CL_INVALID_IMAGE_SIZE:
err_msg = "CL_INVALID_IMAGE_SIZE";
break;
case CL_INVALID_SAMPLER:
err_msg = "CL_INVALID_SAMPLER";
break;
case CL_INVALID_BINARY:
err_msg = "CL_INVALID_BINARY";
break;
case CL_INVALID_BUILD_OPTIONS:
err_msg = "CL_INVALID_BUILD_OPTIONS";
break;
case CL_INVALID_PROGRAM:
err_msg = "CL_INVALID_PROGRAM";
break;
case CL_INVALID_PROGRAM_EXECUTABLE:
err_msg = "CL_INVALID_PROGRAM_EXECUTABLE";
break;
case CL_INVALID_KERNEL_NAME:
err_msg = "CL_INVALID_KERNEL_NAME";
break;
case CL_INVALID_KERNEL_DEFINITION:
err_msg = "CL_INVALID_KERNEL_DEFINITION";
break;
case CL_INVALID_KERNEL:
err_msg = "CL_INVALID_KERNEL";
break;
case CL_INVALID_ARG_INDEX:
err_msg = "CL_INVALID_ARG_INDEX";
break;
case CL_INVALID_ARG_VALUE:
err_msg = "CL_INVALID_ARG_VALUE";
break;
case CL_INVALID_ARG_SIZE:
err_msg = "CL_INVALID_ARG_SIZE";
break;
case CL_INVALID_KERNEL_ARGS:
err_msg = "CL_INVALID_KERNEL_ARGS";
break;
case CL_INVALID_WORK_DIMENSION:
err_msg = "CL_INVALID_WORK_DIMENSION";
break;
case CL_INVALID_WORK_GROUP_SIZE:
err_msg = "CL_INVALID_WORK_GROUP_SIZE";
break;
case CL_INVALID_WORK_ITEM_SIZE:
err_msg = "CL_INVALID_WORK_ITEM_SIZE";
break;
case CL_INVALID_GLOBAL_OFFSET:
err_msg = "CL_INVALID_GLOBAL_OFFSET";
break;
case CL_INVALID_EVENT_WAIT_LIST:
err_msg = "CL_INVALID_EVENT_WAIT_LIST";
break;
case CL_INVALID_EVENT:
err_msg = "CL_INVALID_EVENT";
break;
case CL_INVALID_OPERATION:
err_msg = "CL_INVALID_OPERATION";
break;
case CL_INVALID_GL_OBJECT:
err_msg = "CL_INVALID_GL_OBJECT";
break;
case CL_INVALID_BUFFER_SIZE:
err_msg = "CL_INVALID_BUFFER_SIZE";
break;
case CL_INVALID_MIP_LEVEL:
err_msg = "CL_INVALID_MIP_LEVEL";
break;
case CL_INVALID_GLOBAL_WORK_SIZE:
err_msg = "CL_INVALID_GLOBAL_WORK_SIZE";
break;
case CL_INVALID_PROPERTY:
err_msg = "CL_INVALID_PROPERTY";
break;
case CL_INVALID_IMAGE_DESCRIPTOR:
err_msg = "CL_INVALID_IMAGE_DESCRIPTOR";
break;
case CL_INVALID_COMPILER_OPTIONS:
err_msg = "CL_INVALID_COMPILER_OPTIONS";
break;
case CL_INVALID_LINKER_OPTIONS:
err_msg = "CL_INVALID_LINKER_OPTIONS";
break;
case CL_INVALID_DEVICE_PARTITION_COUNT:
err_msg = "CL_INVALID_DEVICE_PARTITION_COUNT";
break;
case CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR:
err_msg = "CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR";
break;
case CL_PLATFORM_NOT_FOUND_KHR:
err_msg = "CL_PLATFORM_NOT_FOUND_KHR";
break;
}
std::cout << err_msg << " =at= " << function_name << std::endl;
return true;
}