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1 INTRODUCTION

For this lab we again took our 15 optimization functions and ran them through 3 new methods
of determining the global minimum. The functions being: The Self Organizing Migrating
Algorithm (SOMA) which uses an evolutional approach , The Firefly Algorithm (FA) which uses
an evolutional swarm approach similar to Particle Swarm, and the Harmony Search Algorithm
(HS) which uses another evolutional style approach.

2 METHODS

For each of the 3 search methods and all 15 of the search functions we ran tests for a set
amount of iterations using the python scripts we wrote for the previous lab. These results were
then written out to a file from which we calculated the min, max, range, etc.

We also slightly modified the way FA calculated the step when changin it’s direction. Instead
of using a random distribution when calculating the FA random step we used a suggested
regular distribution that we found when researching the problem online.

3 ANALYSIS

This lab produced both surprising and disappointing results when evaluating the search
functions. The most surprising results are that of SOMA, where it regularly equaled or beat
the most accurate search function so far which has been Differential Evolution (DE). Of the
15 functions tested, SOMA had better results than DE for 6 of the functions. The rest of the 9
functions tested were very close to the results found by the DE search function.



The disappointing results produced by this lab lay in the other two functions tested. HS
and FA produced very similar results overall, most possibly because they are not all that
much better than particle swarm of which they are in the same class. Between the two search
functions, there was very seldom a difference of more than 20 to 30 percent in their fitnesses.
We think it’s best to compare these two functions to their cousin Particle Swarm (PSO) as it is
the closest related method.

In relation to PSO the functions did very similarly for the later functions (>4). The lower
functions (<4) all produced results which were much more inaccurate than traditional particle
swarm. In regards to the later functions, HS was only able to beat a PSO search method under
function 6 with 11.28 determined as the minimum, with PSO returning 12.15. FA wasn’t able
to beat PSO in function 6 but it did come close with 13.32. Another notable point to look at is
function 15 where HS was able to find the minimum at -18.70, but FA was unable to capture
the minimum with 16.40.

4 CONCLUSION

The conclusion for this lab is a pessimistic one, SOMA was a great success and a valuable
addition to our growing library of search functions. But are overshadowed by the poor per-
formance not only in the accuracy of answers, but also the run times of FA and HS. PSO was
able to outperform HS and FA in almost every aspect, and that is even telling as PSO performs
poorly when compared to other search functions we have used for some specific functions.
Walking away from this lab, I believe that we will add SOMA to our list of highly accurate and
performance search methods, while leaving FA and HS for problem sets which they are most
suited to.

Although we scrutinized our code to an appropriate degree we can't rule out the poor
performance of the FA and HS algorithms being caused by incorrect implementations. We're
reasonably sure that this is not the case though as the comparable performance to PSO was
expected. Additionally SOMA was not entirely without faults either. Function 10 for example
shows an almost 250 percent increase in the minimum value over it'’s DE an PSO counterparts.
This is worrisome as all of the other results produced by SOMA were within 20 to 30 percent of
PSO and DE.



5 RESULTS

ison of SOMA, HS and FA

: Computation compar

Figure 5.1
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6 PREVIOUS RESULTS

ison of DE, GA and PSO
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Figure 6.1
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