
Lab 3

Dr. Donald Davendra
CS471 - Optimization

October 26, 2016

1 Introduction

The lab introduces three of the most common meta-heuristics currently used. These are
Genetic Algorithms (GA), Differential Evolution (DE) and Particle Swarm Optimization
(PSO).

These algorithms appeared in the 1980’s and 1990’s and have been extensively researched
for the past 20 years or so and form the backbone of many optimization toolkits used in
industry.

This lab requires you to code the three algorithms in a common framework and conduct
experiments on the unimodel and multimodel problems. The algorithms are described in the
following sections.

2 Differential Evolution

Whether in industry or in research, users generally demand that a practical optimization
technique should fulfil three requirements:

1. the method should find the true global minimum, regardless of the initial system pa-
rameter values;

2. convergence should be fast; and

3. the program should have a minimum of control parameters so that it will be easy to
use.

Prof. Price invented the differential evolution (DE) algorithm in a search for a technique
that would meet the above criteria. DE is a method, which is not only astonishingly simple,
but also performs extremely well on a wide variety of test problems. It is inherently parallel
because it is a population based approach and hence lends itself to computation via a network
of computers or processors. The basic strategy employs the difference of two randomly
selected parameter vectors as the source of random variations for a third parameter vector.

The parameters used in DE are = = cost or the value of the objective function, D =
problem dimension, NP = population size, P = population of X−vectors, G = generation

1

number, Gmax = maximum generation number, X = vector composed of D parameters, V
= trial vector composed of D parameters, CR = crossover factor. Others are F = scaling
factor (0 < F ≤ 1.2), (U) = upper bound, (L) = lower bound, u, and v = trial vectors, x

(G)
best

= vector with minimum cost in generation G, x
(G)
i = ith vector in generation G, b

(G)
i = ith

buffer vector in generation G, x
(G)
r1 , x

(G)
r2 = randomly selected vector, L = random integer

(0 < L < D− 1). In the formulation, N = number of cities. Some integers used are i, j.
Differential Evolution (DE) is a novel parallel direct search method, which utilizes NP

parameter vectors

x
(G)
i , i = 0, 1, 2, ..., NP − 1 (1)

as a population for each generation, G. The population size, NP does not change during
the minimization process. The initial population is generated randomly assuming a uniform
probability distribution for all random decisions if there is no initial intelligent information
for the system. The crucial idea behind DE is a new scheme for generating trial parameter
vectors. DE generates new parameter vectors by adding the weighted difference vector
between two population members to a third member. If the resulting vector yields a lower
objective function value than a predetermined population member, the newly generated
vector replaces the vector with which it was compared. The comparison vector can, but
need not be part of the generation process mentioned above. In addition the best parameter
vector x

(G)
best, is evaluated for every generation G in order to keep track of the progress that is

made during the minimization process. Extracting distance and direction information from
the population to generate random deviations result in an adaptive scheme with excellent
convergence properties.

Descriptions for the earlier two most promising variants of DE (later known as DE2 and
DE3) are presented in order to clarify how the search technique works, then a complete list
of the variants to date are given thereafter. The most comprehensive book that describes
DE for continuous optimization problems is [?].

2.1 Scheme of DE

2.1.1 Initialization

As with all evolutionary optimization algorithms, DE works with a population of solutions,
not with a single solution for the optimization problem. Population P of generation G
contains NP solution vectors called individuals of the population and each vector represents
potential solution for the optimization problem:

P (G) = X
(G)
i i = 1, . . . , NP ; G = 1, . . . , Gmax (2)

Additionally, each vector contains D parameters:

X
(G)
i = x

(G)
j,i i = 1, . . . , NP ; j = 1, . . . , D (3)

In order to establish a starting point for optimum seeking, the population must be initial-
ized. Often there is no more knowledge available about the location of a global optimum than

2

the boundaries of the problem variables. In this case, a natural way to initialize the popu-
lation P (0) (initial population) is to seed it with random values within the given boundary
constraints:

P (0) = x
(0)
j,i = x

(L)
j + randj[0, 1] ·

(
x
(U)
j − x(L)j

)
∀i ∈ [1, NP]; ∀j ∈ [1, D] (4)

where randj[0, 1] represents a uniformly distributed random value that ranges from zero
to one. The lower and upper boundary constraints are,X(L) and X(L), respectively:

x
(L)
j ≤ xj ≤ x

(U)
j ∀j ∈ [1, D] (5)

For this scheme and other schemes, three operators are crucial: mutation, crossover and
selection. These are now briefly discussed.

2.1.2 Mutation

The first variant of DE works as follows: for each vector x
(G)
i , i = 0, 1, 2, .., NP − 1, a trial

vector v is generated according to

v
(G+1)
j,i = x

(G)
j,r1 + F ·

(
x
(G)
j,r2 − x

(G)
j,r3

)
(6)

where i ∈ [1, NP]; j ∈ [1, D] , F > 0, and the integers r1, r2, r3 ∈ [1, NP] are
generated randomly selected, except: r1 6= r2 6= r3 6= i.

Three randomly chosen indexes, r1, r2, and r3 refer to three randomly chosen vectors of
population. They are mutually different from each other and also different from the running
index i. New random values for r1, r2, and r3 are assigned for each value of index i (for each
vector). A new value for the random number rand[0, 1] is assigned for each value of index j
(for each vector parameter). F is a real and constant factor, which controls the amplification
of the differential variation.

2.1.3 Crossover

In order to increase the diversity of the parameter vectors, the vector

u = (u1, u2, ·, uD)T (7)

u
(G)
j =

 v
(G)
j for j = 〈n〉D , 〈n+ 1〉D , ..., 〈n+ L− 1〉D(
x
(G)
i

)
j
otherwise

(8)

is formed where the acute brackets 〈〉D denote the modulo function with modulus D. This
means that a certain sequence of the vector elements of u are identical to the elements of v,
the other elements of u acquire the original values of x

(G)
i . Choosing a subgroup of parameters

for mutation is similar to a process known as crossover in genetic algorithm. The integer L
is drawn from the interval [0, D-1] with the probability Pr(L = v) = (CR)v. CR ∈ [0, 1] is
the crossover probability and constitutes a control variable. The random decisions for both
n and L are made anew for each trial vector v.

3

Table 1: Differential Evolution Strategies

Strategy Formulation

Strategy 1: DE/best/1/exp: v = x
(G)
best + F ·

(
x
(G)
r2 − x

(G)
r3

)
Strategy 2: DE/rand/1/exp: v = x

(G)
r1 + F ·

(
x
(G)
r2 − x

(G)
r3

)
Strategy 3: DE/rand-to-best/1/exp v = x

(G)
i + λ ·

(
x
(G)
best − x

(G)
i

)
+F ·

(
x
(G)
r1 − x

(G)
r2

)
Strategy 4: DE/best/2/exp: v = x

(G)
best + F ·

(
x
(G)
r1 + x

(G)
r2 − x

(G)
r3 − x

(G)
r4

)
Strategy 5: DE/rand/2/exp: v = x

(G)
r5 + F ·

(
x
(G)
r1 + x

(G)
r2 − x

(G)
r3 − x

(G)
r4

)
Strategy 6: DE/best/1/bin: v = x

(G)
best + F ·

(
x
(G)
r2 − x

(G)
r3

)
Strategy 7: DE/rand/1/bin: v = x

(G)
r1 + F ·

(
x
(G)
r2 − x

(G)
r3

)
Strategy 8: DE/rand-to-best/1/bin: v = x

(G)
i + λ ·

(
x
(G)
best − x

(G)
i

)
+F ·

(
x
(G)
r1 − x

(G)
r2

)
Strategy 9: DE/best/2/bin v = x

(G)
best + F ·

(
x
(G)
r1 + x

(G)
r2 − x

(G)
r3 − x

(G)
r4

)
Strategy 10: DE/rand/2/bin: v = x

(G)
r5 + F ·

(
x
(G)
r1 + x

(G)
r2 − x

(G)
r3 − x

(G)
r4

)

2.1.4 Selection

In order to decide whether the new vector u shall become a population member of generation
G+1, it will be compared to x

(G)
i . If vector u yields a smaller objective function value than

x
(G)
i , x

(G+1)
i is set to u, otherwise the old value x

(G)
i is retained.

2.2 DE Strategies

The originators have suggested ten different working strategies of DE and some guidelines
in applying these strategies for any given problem (see Table1). Different strategies can be
adopted in the DE algorithm depending upon the type of problem for which it is applied.
The strategies can vary based on the vector to be perturbed, number of difference vectors
considered for perturbation, and finally the type of crossover used.

The general convention used above is as follows: DE/x/y/z. DE stands for differential
evolution algorithm, x represents a string denoting the vector to be perturbed, y is the num-
ber of difference vectors considered for perturbation of x, and z is the type of crossover being
used. Other notations are exp: exponential; bin: binomial). Thus, the working algorithm is
the seventh strategy of DE, that is, DE/rand/1/bin. Hence the perturbation can be either
in the best vector of the previous generation or in any randomly chosen vector. Similarly for
perturbation, either single or two vector differences can be used. For perturbation with a
single vector difference, out of the three distinct randomly chosen vectors, the weighted vec-
tor differential of any two vectors is added to the third one. Similarly for perturbation with
two vector differences, five distinct vectors other than the target vector are chosen randomly
from the current population. Out of these, the weighted vector difference of each pair of any
four vectors is added to the fifth one for perturbation.

4

In exponential crossover, the crossover is performed on the D (the dimension or number
of variables to be optimized) variables in one loop until it is within the CR bound. For
discrete optimization problems, the first time a randomly picked number between 0 and 1
goes beyond the CR value, no crossover is performed and the remaining D variables are left
intact. In binomial crossover, the crossover is performed on each the D variables whenever
a randomly picked number between 0 and 1 is within the CR value. Hence, the exponential
and binomial crossovers yield similar results.

The outline for the DE algorithm is given in Figure 1.

1.Input :D,Gmax, NP ≥ 4, F ∈ (0, 1+) , CR ∈ [0, 1], and initial bounds :~x(L), ~x(U).

2.Initialize :

{
∀i ≤ NP ∧ ∀j ≤ D : xG=0

i,j = x
(L)
j + randj [0, 1] ·

(
x
(U)
j − x(L)j

)
i = {1, 2, . . . , NP}, j = {1, 2, . . . , D}, G = 0, randj[0, 1] ∈ [0, 1]

3.While G < Gmax

∀i ≤ NP



4. Mutate and recombine :
4.1 r1, r2, r3 ∈ {1, 2,, NP}, randomly selected, except : r1 6= r2 6= r3 6= i
4.2 jrand ∈ {1, 2, ..., D}, randomly selected once each i

4.3 ∀j ≤ D, u
(G+1)
j,i =


x
(G)
j,r3

+ F · (x(G)
j,r1
− x(G)

j,r2
)

if (randj[0, 1] < CR ∨ j = jrand)

x
(G)
j,i otherwise

5. Select

~x
(G+1)
i =

{
~u
(G+1)
i if f(~u

(G+1)
i) ≤ f(~x

(G)
i)

~x
(G)
i otherwise

G = G+ 1

Figure 1: Differential Evolution Algorithm

3 Genetic Algorithm

Genetic Algorithms (GA) are the heuristic search and optimization techniques that mimic
the process of natural evolution. Using this process, it aims to build a computational model
that uses natural selections as the optimizing model.

There are three basic GA operators that are used in the model. The basic design of a
simple GA is give as:

5

1 Function SimpleGeneticAlgorithm() /* simple Genetic Algorithm */

2 Initialize population
3 Calculate fitness function
4 while !Terination−Criteria do
5 Selection
6 Crossover
7 Mutation
8 Calculate fitness function

9 end while

3.1 Selection

The process that determines which solutions are to be preserved and allowed to reproduce
and which ones deserve to die out.

The primary objective of the selection operator is to emphasize the good solutions and
eliminate the bad solutions in a population while keeping the population size constant.

There are different techniques to implement selection in Genetic Algorithms. They are:

• Tournament selection

• Roulette wheel selection

• Proportionate selection

• Rank selection

• Steady state selection

3.1.1 Tournament Selection

In tournament selection, several tournaments are played among a few individuals. The
individuals are chosen at random from the population. The winner of each tournament is
selected for next generation. Selection pressure can be adjusted by changing the tournament
size. Weak individuals have a smaller chance to be selected if tournament size is large.

3.1.2 Roulette wheel and proportionate selection

In this selection, parents are selected based on the fitness values. Better solutions have a
higher chance of getting accepted.

If fi is the fitness of individual i in the population, its probability of being selected is
pi = fi

N∑
j=1

fj

, where N is the number of individuals in the population.

3.2 Crossover

The crossover operator is used to create new solutions from the existing solutions available
in the mating pool after applying selection operator.

6

This operator exchanges the gene information between the solutions in the mating pool.
The most common is the 1-point crossover. Iterating through the population, another

individual is randomly selected from the population, a random cut-off point is generated. The
pairing is done pairwise, therefore from two individuals, we obtain two new child individuals.
If either one of this child solutions improve on the current indexed parent, then it replaces
the parent in the population. There are more selection criterias.

3.3 Mutation

Mutation is the occasional introduction of new features in to the solution strings of the
population pool to maintain diversity in the population. Though crossover has the main
responsibility to search for the optimal solution, mutation is also used for this purpose.

Mutation is obtained randomly, using some proportional selection criteria, a new variable
is introduced in the solution.

3.4 Elitism

Crossover and mutation may destroy the best solution of the population pool by accident.
Elitism is the preservation of few best solutions of the population pool. Elitism is defined in
percentage or in a number of solutions that need to be preserved.

3.5 Genetic Algorithm Outline

The GA can be described as in the following algorithms.

7

input : NS: Number of solutions
DIM : Problem dimension
Bounds: Problem bounds (U - upper bound, L - lower bound)
tmax: Maximum number of iterations
CR: Crossover rate
M.Rate: Mutation rate
M.Range: Mutation value range
M.Precision: Mutation precision
ER: Elitism rate

output: x∗: best solution found

1 Elitism = ER · NS
2 Population = ∅
3 randomInit(Population,Bounds) /* initialize solutions randomly */

4 evaluate(Population) /* calculate fitness */

5 t = 1 /* initialize t to 1 */

77 while t ≤ tmax do
8 NewPopulation = ∅
9 for s = 1,. . . ,NS; s += 2 do

10 /* select parents by roulette wheel selection */

11 P1, P2 = select(Population)
12 /* perform crossover with probability CR */

13 O1, O2 = crossover(P1, P2, CR)
14 /* perform mutation with mutation parameters M */

15 mutate(O1, M, Bounds)
16 mutate(O2, M, Bounds)
17 add(NewPopulation, O1)
18 add(NewPopulation, O2)

19 end for
20 /* calculate cost for each solution */

21 evaluate(NewPopulation)
22 /* combine Population and NewPopulation into Population */

23 reduce(Population, NewPopulation, EliteSN)
24 /* calculate normalized fitness value */

25 getFitness(Population)
26 getBestSolution(Population)

27 end while

Algorithm 1: Genetic Algorithm

8

1 Function reduce(Population, NewPopulation, EliteSN) /* sort solutions in

each population by cost, so that minimal cost solutions come first */

2 sortByCostAscending(Population)
3 sortByCostAscending(NewPopulation)
4 /* replace first EliteSN worst solutions in NewPopulation by best

solutions in Population */

5 for s = 1,. . . ,EliteSN do
6 NewPopulation[SN+1-s]=Population[s]

7 end for
8 /* swap population data : set Population to NewPopulation */

9 swapData(Population, NewPopulation)

Algorithm 2: reduce function

1 Function select(Population)
2 P1 = selectParent(Population)
3 P2 = selectParent(Population)
4 return(P1,P2)

Algorithm 3: select function

1 Function selectParent(Population)
2 r = rand(1,Population.totalFitness)
3 s = 1
55 while s ≤ NS and r > 0 do
6 r -= Population.fitness[s]
7 end while
8 return(s)

Algorithm 4: selectParent function

1 Function getFitness(Population)
2 for s = 1,. . . ,SN do
3 if Population.cost[s] >= 0 then
4 Population.fitness[s] = 1/(1+ Population.cost[s]);
5 else Population.fitness[s] = 1 + abs(Population.cost[s]);

6 end for
7 Population.totalFitness = sum(Population.fitness)

Algorithm 5: getFitness function

1 Function mutate(S,M,Bounds)
2 for i = 1,. . . ,DIM do
3 if random(0,1) < M.Rate then
4 S[i] += random(-1,1) ·(Bounds[i].U −Bounds[i].L) ·M.Range ·

power(2, (−1 · random(0, 1) ·M.Precision))
5 end if

6 end for

Algorithm 6: mutate function

9

1 Function crossover(P1, P2, CR)
2 if random(0,1) < CR then
3 d = random(1,DIM)
4 O1 = join(P1[1..(d-1)], P2[d..DIM]) ;
5 O2 = join(P2[1..(d-1)], P1[d..DIM]) ;
6 else
7 O1 = P1 ;
8 O2 = P2 ;

Algorithm 7: crossover function

4 Particle Swarm Optimization

Inspired by the flocking and schooling patterns of birds and fish, Particle Swarm Optimiza-
tion (PSO) was invented by Russell Eberhart and James Kennedy in 1995. Originally, these
two started out developing computer software simulations of birds flocking around food
sources, then later realized how well their algorithms worked on optimization problems.

Particle Swarm Optimization might sound complicated, but it’s really a very simple
algorithm. Over a number of iterations, a group of variables have their values adjusted
closer to the member whose value is closest to the target at any given moment. It’s an
algorithm that’s simple and easy to implement.

The algorithm keeps track of three global variables:

• Target value or condition

• Global best (gBest) value indicating which particle’s data is currently closest to the
Target

• Stopping value indicating when the algorithm should stop if the Target isn’t found

Each particle consists of:

• Data representing a possible solution

• A Velocity value indicating how much the Data can be changed

• A personal best (pBest) value indicating the closest the particle’s Data has ever come
to the Target

The particles’ data could be anything. In the flocking birds example above, the data
would be the X, Y , Z coordinates of each bird. The individual coordinates of each bird would
try to move closer to the coordinates of the bird which is closer to the food’s coordinates
(gBest). If the data is a pattern or sequence, then individual pieces of the data would be
manipulated until the pattern matches the target pattern.

The velocity value is calculated according to how far an individual’s data is from the
target. The further it is, the larger the velocity value. In the birds example, the individuals
furthest from the food would make an effort to keep up with the others by flying faster
toward the gBest bird. If the data is a pattern or sequence, the velocity would describe how

10

different the pattern is from the target, and thus, how much it needs to be changed to match
the target.

Each particle’s pBest value only indicates the closest the data has ever come to the target
since the algorithm started.

The gBest value only changes when any particle’s pBest value comes closer to the target
than gBest. Through each iteration of the algorithm, gBest gradually moves closer and
closer to the target until one of the particles reaches the target.

It’s also common to see PSO algorithms using population topologies, or “neighborhoods”,
which can be smaller, localized subsets of the global best value. These neighborhoods can
involve two or more particles which are predetermined to act together, or subsets of the
search space that particles happen into during testing. The use of neighborhoods often help
the algorithm to avoid getting stuck in local minima.

The general outline of the PSO algorithm is given in the following pseudocode.

11

input : Iterations: maximum number of iterations
Particles: number of particles pi
gBest: the best solution in the population
pBest: the best solution found by specific particle
Bounds: Problem bounds (U - upper bound, L - lower bound)

output: gBest: best particle found

1 for i = 1,. . . ,Particles do
2 /* generate particles randomly */

3 pi = L+rand[0,1](U-L)
4 /* calculate particles velocity */

5 vi = f(pi)
6 /* set pBest for each particle */

7 pBesti = vi
8 end for
9 /* set gBest from all particles */

10 gBest = min(pBest)
11 for t = 1,. . . ,Iterations do
12 for j = 1,. . . ,Particles do
13 /* calculate new velocity vj of particle pj */

14 vj
(t+1) = vj

(t) + c1 · rand ·
(
pBest(t)j − pj(t)

)
+ c2 · rand ·

(
gBest(t) − pj(t)

)
15 /* update particle pj */

16 pj
(t+1) = pj

(t) + vj
(t+1)

17 /* calculate particles velocity */

18 vj = f(pj)
19 /* check if the particle velocity has improved */

20 if vj < pBestj then
21 /* update pBest of particle */

22 pBestj = vj
23 end if
24 /* check if gBest has improved */

25 if pBestj < gBest then
26 /* update gBest */

27 gBest = pBestj
28 end if

29 end for

30 end for

Algorithm 8: Particle Swarm Optimization

5 Experimentation

The student is required to code all three algorithms in the language of their choice. Ideally,
all three algorithms should share same auxiliary structures, such as population generation,
memory management, problems definitions etc.

12

The experimentation parameters is given in Table 2.

Table 2: Experiment parameters

Parameters Values
Population size 50 (min)
Iterations 100 (min)
Dimensions 20

Submission

The student must submit the following separate files to canvas:

1. source codes for the problems

2. a LATEX typeset report on the results and its analysis

The report must contain an introduction in the algorithms, the full experimentation results
in tabular format and condensed results with statistical analysis compared with what was
obtained in Lab 1 and 2.

The files must be submitted through Canvas by midnight November 7, 2016. The penalty
for late submission is 10% for 1 day, 20% for 2 day, after which it will be zero. The grading
rubric is given in Table 3.

Table 3: Grading rubric

File Aspects Points

Code Compiles and executes 35
Explanation 15

Report Results 25
Analysis 25

13

