You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

147 lines
4.1 KiB

#pragma once
#include <SFML/Graphics.hpp>
#include <iostream>
#include "Map.h"
#include <Ray.h>
#include "util.hpp"
Ray::Ray(
Map *map,
sf::Vector2<int> resolution,
sf::Vector2<int> pixel,
sf::Vector3<float> camera_position,
sf::Vector3<float> ray_direction) {
this->pixel = pixel;
this->map = map;
origin = camera_position;
direction = ray_direction;
dimensions = map->getDimensions();
}
sf::Color Ray::Cast() {
// Get the cartesian direction for computing
sf::Vector3<float> cartesian = direction;//SphereToCart(direction);
// Setup the voxel step based on what direction the ray is pointing
sf::Vector3<int> voxel_step(1, 1, 1);
voxel_step.x *= (cartesian.x > 0) - (cartesian.x < 0);
voxel_step.y *= (cartesian.y > 0) - (cartesian.y < 0);
voxel_step.z *= (cartesian.z > 0) - (cartesian.z < 0);
// Setup the voxel coords from the camera origin
voxel = sf::Vector3<int>(
(int) origin.x,
(int) origin.y,
(int) origin.z
);
// Delta T is the units a ray must travel along an axis in order to
// traverse an integer split
delta_t = sf::Vector3<float>(
fabsf((float) (1.0 / cartesian.x)),
fabsf((float) (1.0 / cartesian.y)),
fabsf((float) (1.0 / cartesian.z))
);
// So the way I need to do the camera is this.
// 1.) Setup the viewplane and then store the values
// - Camera origin
// - Resolution of the view plane X, Y
// - Focal length to determine FOV
//
// 2.) For each draw. Get a copy of the view plane
// 3.) Rotate around the X axis first, left and right
// 4.) Then rotate alond the Y axis, up and down.
// 5.) Make sure to limit the camera Y Rotation to 180 and -180 degrees
// - Rays will still go pas 180 for the amount of FOV the camera has!
// Intersection T is the collection of the next intersection points
// for all 3 axis XYZ.
intersection_t = sf::Vector3<float>(
delta_t.x + origin.x,
delta_t.y + origin.y,
delta_t.z + origin.z
);
if (pixel.y == 200){
int i = 0;
i++;
}
int dist = 0;
do {
if ((intersection_t.x) < (intersection_t.y)) {
if ((intersection_t.x) < (intersection_t.z)) {
voxel.x += voxel_step.x;
intersection_t.x = intersection_t.x + delta_t.x;
} else {
voxel.z += voxel_step.z;
intersection_t.z = intersection_t.z + delta_t.z;
}
} else {
if ((intersection_t.y) < (intersection_t.z)) {
voxel.y += voxel_step.y;
intersection_t.y = intersection_t.y + delta_t.y;
} else {
voxel.z += voxel_step.z;
intersection_t.z = intersection_t.z + delta_t.z;
}
}
// If the ray went out of bounds
if (voxel.z >= dimensions.z) {
return sf::Color(0, 0, 255, 50);
}
if (voxel.x >= dimensions.x) {
return sf::Color(0, 0, 255, 100);
}
if (voxel.y >= dimensions.x) {
return sf::Color(0, 0, 255, 150);
}
if (voxel.x < 0) {
return sf::Color(0, 255, 0, 150);
}
if (voxel.y < 0) {
return sf::Color(0, 255, 0, 100);
}
if (voxel.z < 0) {
return sf::Color(0, 255, 0, 50);
}
// If we hit a voxel
switch (map->list[voxel.x + dimensions.x * (voxel.y + dimensions.z * voxel.z)]) {
case 1:
return sf::Color::Red;
case 2:
return sf::Color::Magenta;
case 3:
return sf::Color::Yellow;
case 4:
return sf::Color(40, 230, 96, 200);
case 5:
return sf::Color(80, 120, 96, 100);
case 6:
return sf::Color(150, 80, 220, 200);
}
dist++;
} while (dist < 200);
return sf::Color::Cyan;
}