You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

303 lines
9.4 KiB

#include "map/Octree.h"
Octree::Octree() {
// initialize the first stack block
for (int i = 0; i < 0x8000; i++) {
descriptor_buffer[i] = 0;
}
}
void Octree::Generate(char* data, sf::Vector3i dimensions) {
// Launch the recursive generator at (0,0,0) as the first point
// and the octree dimension as the initial block size
std::tuple<uint64_t, uint64_t> root_node = GenerationRecursion(data, dimensions, sf::Vector3i(0, 0, 0), OCT_DIM/2);
// ========= DEBUG ==============
PrettyPrintUINT64(std::get<0>(root_node), &output_stream);
output_stream << " " << OCT_DIM << " " << counter++ << std::endl;
// ==============================
// ============= TEMP!!! ===================
if (stack_pos - 1 > stack_pos) {
global_pos -= stack_pos;
stack_pos = 0x8000;
}
else {
stack_pos -= 1;
}
memcpy(&descriptor_buffer[stack_pos + global_pos], &std::get<0>(root_node), 1 * sizeof(uint64_t));
// ========================================
DumpLog(&output_stream, "raw_output.txt");
}
// Copy to stack enables the hybrid depth-breadth first tree by taking
// a list of valid non-leaf child descriptors contained under a common parent.
// It takes the list of children, and the current level in the voxel hierarchy.
// It returns the index to the first element of the
// This is all fine and dandy, but we have the problem where we need to assign
// relative pointers to objects so we need to keep track of where their children are
// being assigned.
uint64_t Octree::copy_to_stack(std::vector<uint64_t> children, unsigned int voxel_scale) {
// Check for the 15 bit boundry
if (stack_pos - children.size() > stack_pos) {
global_pos = stack_pos;
stack_pos = 0x8000;
}
else {
stack_pos -= children.size();
}
// Copy to stack needs to keep track of an "anchor_stack" which will hopefully facilitate
// relative pointer generation for items being copied to the stack
// We need to return the relative pointer to the child node list
// 16 bits, one far bit, one sign bit? 14 bits == +- 16384
// Worth halving the ptr reach to enable backwards ptrs?
// could increase packability allowing far ptrs and attachments to come before or after
//stack_pos -= children.size();
memcpy(&descriptor_buffer[stack_pos + global_pos], children.data(), children.size() * sizeof(uint64_t));
// Return the bitmask encoding the index of that value
// If we tripped the far bit, allocate a far index to the stack and place
// it at the bottom of the child_descriptor node level array
// And then shift the far bit to 1
// If not, shift the index to its correct place
return stack_pos;
}
bool Octree::get_voxel(sf::Vector3i position) {
// Struct that holds the state necessary to continue the traversal from the found voxel
oct_state state;
// push the root node to the parent stack
uint64_t head = descriptor_buffer[root_index];
state.parent_stack[state.parent_stack_position] = head;
// Set our initial dimension and the position at the corner of the oct to keep track of our position
int dimension = OCT_DIM;
sf::Vector3i quad_position(0, 0, 0);
// While we are not at the required resolution
// Traverse down by setting the valid/leaf mask to the subvoxel
// Check to see if it is valid
// Yes?
// Check to see if it is a leaf
// No? Break
// Yes? Scale down to the next hierarchy, push the parent to the stack
//
// No?
// Break
while (dimension > 1) {
// So we can be a little bit tricky here and increment our
// array index that holds our masks as we build the idx.
// Adding 1 for X, 2 for Y, and 4 for Z
int mask_index = 0;
// Do the logic steps to find which sub oct we step down into
if (position.x >= (dimension / 2) + quad_position.x) {
// Set our voxel position to the (0,0) of the correct oct
quad_position.x += (dimension / 2);
// increment the mask index and mentioned above
mask_index += 1;
// Set the idx to represent the move
state.idx_stack[state.scale] |= idx_set_x_mask;
}
if (position.y >= (dimension / 2) + quad_position.y) {
quad_position.y |= (dimension / 2);
mask_index += 2;
state.idx_stack[state.scale] ^= idx_set_y_mask;
}
if (position.z >= (dimension / 2) + quad_position.z) {
quad_position.z += (dimension / 2);
mask_index += 4;
state.idx_stack[state.scale] |= idx_set_z_mask;
}
// Check to see if we are on a valid oct
if ((head >> 16) & mask_8[mask_index]) {
// Check to see if it is a leaf
if ((head >> 24) & mask_8[mask_index]) {
// If it is, then we cannot traverse further as CP's won't have been generated
return true;
}
// If all went well and we found a valid non-leaf oct then we will traverse further down the hierarchy
state.scale++;
dimension /= 2;
// Count the number of valid octs that come before and add it to the index to get the position
// Negate it by one as it counts itself
int count = count_bits((uint8_t)(head >> 16) & count_mask_8[mask_index]) - 1;
// access the element at which head points to and then add the specified number of indices
// to get to the correct child descriptor
head = descriptor_buffer[(head & child_pointer_mask) + count];
// Increment the parent stack position and put the new oct node as the parent
state.parent_stack_position++;
state.parent_stack[state.parent_stack_position] = head;
}
else {
// If the oct was not valid, then no CP's exists any further
// This implicitly says that if it's non-valid then it must be a leaf!!
// It appears that the traversal is now working but I need
// to focus on how to now take care of the end condition.
// Currently it adds the last parent on the second to lowest
// oct CP. Not sure if thats correct
return false;
}
}
return true;
}
void Octree::print_block(int block_pos) {
std::stringstream sss;
for (int i = block_pos; i < (int)pow(2, 15); i++) {
PrettyPrintUINT64(descriptor_buffer[i], &sss);
sss << "\n";
}
DumpLog(&sss, "raw_data.txt");
}
std::tuple<uint64_t, uint64_t> Octree::GenerationRecursion(char* data, sf::Vector3i dimensions, sf::Vector3i pos, unsigned int voxel_scale) {
// The 8 subvoxel coords starting from the 1th direction, the direction of the origin of the 3d grid
// XY, Z++, XY
std::vector<sf::Vector3i> v = {
sf::Vector3i(pos.x , pos.y , pos.z),
sf::Vector3i(pos.x + voxel_scale, pos.y , pos.z),
sf::Vector3i(pos.x , pos.y + voxel_scale, pos.z),
sf::Vector3i(pos.x + voxel_scale, pos.y + voxel_scale, pos.z),
sf::Vector3i(pos.x , pos.y , pos.z + voxel_scale),
sf::Vector3i(pos.x + voxel_scale, pos.y , pos.z + voxel_scale),
sf::Vector3i(pos.x , pos.y + voxel_scale, pos.z + voxel_scale),
sf::Vector3i(pos.x + voxel_scale, pos.y + voxel_scale, pos.z + voxel_scale)
};
// A tuple holding the child descriptor that we're going to fill out and the
// absolute position of it within the descriptor buffer
std::tuple<uint64_t, uint64_t> descriptor_and_position(0, 0);
// If we hit the 1th voxel scale then we need to query the 3D grid
// and get the voxel at that position. I assume in the future when I
// want to do chunking / loading of raw data I can edit the voxel access
if (voxel_scale == 1) {
// Setting the individual valid mask bits
// These don't bound check, should they?
for (int i = 0; i < v.size(); i++) {
if (get1DIndexedVoxel(data, dimensions, v.at(i)))
SetBit(i + 16, &std::get<0>(descriptor_and_position));
}
// We are querying leafs, so we need to fill the leaf mask
std::get<0>(descriptor_and_position) |= 0xFF000000;
// The CP will be left blank, contour mask and ptr will need to
// be added here later
return descriptor_and_position;
}
std::vector<std::tuple<uint64_t, uint64_t>> descriptor_position_array;
// Generate down the recursion, returning the descriptor of the current node
for (int i = 0; i < v.size(); i++) {
std::tuple<uint64_t, uint64_t> child(0, 0);
// Get the child descriptor from the i'th to 8th subvoxel
child = GenerationRecursion(data, dimensions, v.at(i), voxel_scale / 2);
// =========== Debug ===========
PrettyPrintUINT64(std::get<0>(child), &output_stream);
output_stream << " " << voxel_scale << " " << counter++ << std::endl;
// =============================
// If the child is a leaf (contiguous) of non-valid values
if (IsLeaf(std::get<0>(child)) && !CheckLeafSign(std::get<0>(child))) {
// Leave the valid mask 0, set leaf mask to 1
SetBit(i + 16 + 8, &std::get<0>(descriptor_and_position));
}
// If the child is valid and not a leaf
else {
// Set the valid mask, and add it to the descriptor array
SetBit(i + 16, &std::get<0>(descriptor_and_position));
descriptor_position_array.push_back(child);
}
}
// We are working bottom up so we need to subtract from the stack position
// the amount of elements we want to use
for (auto desc_pos: descriptor_position_array) {
}
if (stack_pos - descriptor_array.size() > stack_pos) {
global_pos = stack_pos;
stack_pos = 0x8000;
}
else {
stack_pos -= descriptor_array.size();
}
memcpy(&descriptor_buffer[stack_pos + global_pos], descriptor_array.data(), descriptor_array.size() * sizeof(uint64_t));
// Return the node up the stack
return descriptor_and_position;
}
char Octree::get1DIndexedVoxel(char* data, sf::Vector3i dimensions, sf::Vector3i position) {
return data[position.x + OCT_DIM * (position.y + OCT_DIM * position.z)];
}