You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

242 lines
5.8 KiB

#include "Map.h"
Map::Map(sf::Vector3i position) {
load_unload(position);
for (int i = 0; i < 1024; i++) {
block[i] = 0;
}
for (int i = 0; i < OCT_DIM * OCT_DIM * OCT_DIM; i++) {
voxel_data[i] = rand() % 2;
}
}
int BitCount(unsigned int u) {
unsigned int uCount;
uCount = u - ((u >> 1) & 033333333333) - ((u >> 2) & 011111111111);
return ((uCount + (uCount >> 3)) & 030707070707) % 63;
}
void SetBit(int position, char* c) {
*c |= 1 << position;
}
void FlipBit(int position, char* c) {
*c ^= 1 << position;
}
int GetBit(int position, char* c) {
return (*c >> position) & 1;
}
void SetBit(int position, uint64_t* c) {
*c |= 1 << position;
}
void FlipBit(int position, uint64_t* c) {
*c ^= 1 << position;
}
int GetBit(int position, uint64_t* c) {
return (*c >> position) & 1;
}
bool CheckFullValid(const uint64_t c) {
uint64_t bitmask = 0xFF0000;
return (c & bitmask) == bitmask;
}
bool CheckShouldInclude(const uint64_t descriptor) {
// This first one is wrong, I think it's in it's endianness
// Im currently useing bit 0 as the start to the child pointer, yes no?
// Checks if there are any non-leafs
uint64_t leaf_mask = 0xFF000000;
if ((descriptor & leaf_mask) == leaf_mask)
return false;
// Valid mask checks for contiguous values
uint64_t valid_mask = 0xFF0000;
if ((descriptor & valid_mask) == valid_mask)
return true;
else if ((descriptor & valid_mask) == ~valid_mask)
return true;
else
return false;
}
uint64_t Map::generate_children(sf::Vector3i pos, int dim) {
// The 8 subvoxel coords starting from the 1th direction, the direction of the origin of the 3d grid
// XY, Z++, XY
std::vector<sf::Vector3i> v = {
sf::Vector3i(pos.x, pos.y, pos.z),
sf::Vector3i(pos.x + dim, pos.y, pos.z),
sf::Vector3i(pos.x, pos.y + dim, pos.z),
sf::Vector3i(pos.x + dim, pos.y + dim, pos.z),
sf::Vector3i(pos.x, pos.y, pos.z + dim),
sf::Vector3i(pos.x + dim, pos.y, pos.z + dim),
sf::Vector3i(pos.x, pos.y + dim, pos.z + dim),
sf::Vector3i(pos.x + dim, pos.y + dim, pos.z + dim)
};
if (dim == 1) {
// Return the base 2x2 leaf node
uint64_t tmp = 0;
// These don't bound check, should they?
// Setting the individual valid mask bits
for (int i = 0; i < v.size(); i++) {
if (getVoxel(v.at(i)))
SetBit(i + 16, &tmp);
}
// Set the leaf mask to full
tmp |= 0xFF000000;
// The CP will be left blank, contours will be added maybe
return tmp;
}
else {
uint64_t tmp;
uint64_t child;
std::vector<uint64_t> children;
// Generate down the recursion, returning the descriptor of the current node
for (int i = 0; i < v.size(); i++) {
child = generate_children(v.at(i), dim / 2);
if (child != 0 && CheckShouldInclude(child)) {
children.push_back(child);
SetBit(i + 16, &tmp);
}
}
// Now put those values onto the block stack, it returns the
// 16 bit topmost pointer to the block. The 16th bit being
// a switch to jump to a far pointer.
tmp |= a.copy_to_stack(children);
return tmp;
}
return 0;
}
void Map::generate_octree() {
generate_children(sf::Vector3i(0, 0, 0), OCT_DIM);
for (int i = 1000; i >= 0 ; i--) {
PrettyPrintUINT64(a.dat[i]);
}
// levels defines how many levels to traverse before we hit raw data
// Will be the map width I presume. Will still need to handle how to swap in and out data.
// Possible have some upper static nodes that will stay full regardless of contents?
int levels = static_cast<int>(log2(64));
std::list<int> parent_stack;
int byte_pos = 0;
unsigned int parent = 0;
for (int i = 0; i < 16; i++) {
parent ^= 1 << i;
}
unsigned int leafmask = 255;
unsigned int validmask = leafmask << 8;
parent &= validmask;
parent &= leafmask;
std::cout << BitCount(parent & leafmask);
unsigned int children[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
}
void Map::load_unload(sf::Vector3i world_position) {
sf::Vector3i chunk_pos(world_to_chunk(world_position));
//Don't forget the middle chunk
if (chunk_map.find(chunk_pos) == chunk_map.end()) {
chunk_map[chunk_pos] = Chunk(5);
}
for (int x = chunk_pos.x - chunk_radius / 2; x < chunk_pos.x + chunk_radius / 2; x++) {
for (int y = chunk_pos.y - chunk_radius / 2; y < chunk_pos.y + chunk_radius / 2; y++) {
for (int z = chunk_pos.z - chunk_radius / 2; z < chunk_pos.z + chunk_radius / 2; z++) {
if (chunk_map.find(sf::Vector3i(x, y, z)) == chunk_map.end()) {
chunk_map.emplace(sf::Vector3i(x, y, z), Chunk(rand() % 6));
//chunk_map[sf::Vector3i(x, y, z)] = Chunk(rand() % 6);
}
}
}
}
}
void Map::load_single(sf::Vector3i world_position) {
sf::Vector3i chunk_pos(world_to_chunk(world_position));
//Don't forget the middle chunk
if (chunk_map.find(chunk_pos) == chunk_map.end()) {
chunk_map[chunk_pos] = Chunk(0);
}
}
sf::Vector3i Map::getDimensions() {
return sf::Vector3i(0, 0, 0);
}
void Map::setVoxel(sf::Vector3i world_position, int val) {
load_single(world_position);
sf::Vector3i chunk_pos(world_to_chunk(world_position));
sf::Vector3i in_chunk_pos(
world_position.x % CHUNK_DIM,
world_position.y % CHUNK_DIM,
world_position.z % CHUNK_DIM
);
chunk_map.at(chunk_pos).voxel_data[in_chunk_pos.x + CHUNK_DIM * (in_chunk_pos.y + CHUNK_DIM * in_chunk_pos.z)]
= val;
}
char Map::getVoxel(sf::Vector3i pos){
return voxel_data[pos.x + OCT_DIM * (pos.y + OCT_DIM * pos.z)];
}
void Chunk::set(int type) {
for (int i = 0; i < CHUNK_DIM * CHUNK_DIM * CHUNK_DIM; i++) {
voxel_data[i] = 0;
}
for (int x = 0; x < CHUNK_DIM; x+=2) {
for (int y = 0; y < CHUNK_DIM; y+=2) {
//list[x + dim.x * (y + dim.z * z)]
voxel_data[x + CHUNK_DIM * (y + CHUNK_DIM * 1)] = type;
}
}
}