Lighting, testing voxel generation

master
mitchellhansen 9 years ago
parent 14987e3ba7
commit c431d7452a

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$" vcs="Git" />
</component>
</project>

@ -1,6 +1,8 @@
#pragma once
#include <SFML/System/Vector3.hpp>
#include <SFML/System/Vector2.hpp>
#include <SFML/Graphics/Color.hpp>
#include <random>
class Map {
public:
@ -10,47 +12,19 @@ public:
list[i] = 0;
}
for (int i = 51; i < 52; i++) {
list[55 + dim.x * (55 + dim.z * i)] = 1;
}
// The X walls get red and magenta
for (int x = 0; x < dim.x; x += 2) {
for (int y = 0; y < dim.y; y += 2) {
list[x + dim.x * (y + dim.z * 1)] = 1;
}
}
for (int x = 0; x < dim.x; x += 2) {
for (int y = 0; y < dim.y; y += 2) {
list[x + dim.x * (y + dim.z * 99)] = 2;
}
}
// The Z walls get yellow and some other color
for (int x = 0; x < dim.x; x += 2) {
for (int z = 0; z < dim.z; z += 2) {
list[x + dim.x * (99 + dim.z * z)] = 3;
}
}
for (int x = 0; x < dim.x; x += 2) {
for (int z = 0; z < dim.z; z += 2) {
list[x + dim.x * (1 + dim.z * z)] = 4;
}
}
for (int y = 0; y < dim.y; y += 2) {
for (int z = 0; z < dim.z; z += 2) {
list[99 + dim.x * (y + dim.z * z)] = 5;
}
}
for (int y = 0; y < dim.y; y += 2) {
for (int z = 0; z < dim.z; z += 2) {
list[1 + dim.x * (y + dim.z * z)] = 6;
}
}
for (int x = 0; x < dim.x; x++) {
for (int y = 0; y < dim.y; y++) {
for (int z = 0; z < dim.z; z++) {
if (rand() % 100 < 1)
list[x + dim.x * (y + dim.z * z)] = rand() % 6;
else
list[x + dim.x * (y + dim.z * z)] = 0;
}
}
}
dimensions = dim;
global_light = sf::Vector3f(0.2, 0.4, 1);
}
~Map() {
@ -60,6 +34,9 @@ public:
char *list;
sf::Vector3i dimensions;
void moveLight(sf::Vector2f in);
sf::Vector3f global_light;
protected:
private:

@ -68,6 +68,19 @@ inline sf::Vector3f Normalize(sf::Vector3f in) {
}
inline float DotProduct(sf::Vector3f a, sf::Vector3f b){
return a.x * b.x + a.y * b.y + a.z * b.z;
}
inline float Magnitude(sf::Vector3f in){
return sqrt(in.x * in.x + in.y * in.y + in.z * in.z);
}
inline float AngleBetweenVectors(sf::Vector3f a, sf::Vector3f b){
return acos(DotProduct(a, b) / (Magnitude(a) * Magnitude(b)));
}
inline float DegreesToRadians(float in) {
return in * PI / 180.0f;
}

@ -2,7 +2,72 @@
#include "Map.h"
#include <iostream>
#include <SFML/System/Vector3.hpp>
#include <SFML/System/Vector2.hpp>
#include "util.hpp"
sf::Vector3i Map::getDimensions() {
return dimensions;
}
}
void Map::moveLight(sf::Vector2f in) {
sf::Vector3f light_spherical = CartToSphere(global_light);
light_spherical.y += in.y;
light_spherical.x += in.x;
global_light = SphereToCart(light_spherical);
return;
}
//void Map::GenerateFloor(){
//}

@ -51,27 +51,34 @@ sf::Color Ray::Cast() {
delta_t.z
);
int dist = 0;
int face = -1;
// X:0, Y:1, Z:2
// Andrew Woo's raycasting algo
do {
if ((intersection_t.x) < (intersection_t.y)) {
if ((intersection_t.x) < (intersection_t.z)) {
face = 0;
voxel.x += voxel_step.x;
intersection_t.x = intersection_t.x + delta_t.x;
} else {
face = 2;
voxel.z += voxel_step.z;
intersection_t.z = intersection_t.z + delta_t.z;
}
} else {
if ((intersection_t.y) < (intersection_t.z)) {
face = 1;
voxel.y += voxel_step.y;
intersection_t.y = intersection_t.y + delta_t.y;
} else {
face = 2;
voxel.z += voxel_step.z;
intersection_t.z = intersection_t.z + delta_t.z;
}
@ -100,19 +107,43 @@ sf::Color Ray::Cast() {
// If we hit a voxel
int index = voxel.x + dimensions.x * (voxel.y + dimensions.z * voxel.z);
switch (map->list[index]) {
int voxel_data = map->list[index];
float alpha = 0;
if (face == 0) {
alpha = AngleBetweenVectors(sf::Vector3f(1, 0, 0), map->global_light);
alpha = fmod(alpha, 0.785) * 2;
} else if (face == 1) {
alpha = AngleBetweenVectors(sf::Vector3f(0, 1, 0), map->global_light);
alpha = fmod(alpha, 0.785) * 2;
} else if (face == 2){
//alpha = 1.57 / 2;
alpha = AngleBetweenVectors(sf::Vector3f(0, 0, 1), map->global_light);
alpha = fmod(alpha, 0.785) * 2;
}
alpha *= 162;
switch (voxel_data) {
case 1:
return sf::Color::Red;
// AngleBew0 - 1.57 * 162 = 0 - 255
return sf::Color(255, 0, 0, alpha);
case 2:
return sf::Color::Magenta;
return sf::Color(255, 10, 0, alpha);
case 3:
return sf::Color::Yellow;
return sf::Color(255, 0, 255, alpha);
case 4:
return sf::Color(80, 0, 150, 255);
return sf::Color(80, 0, 150, alpha);
case 5:
return sf::Color(255, 120, 255, 255);
return sf::Color(255, 120, 255, alpha);
case 6:
return sf::Color(150, 80, 220, 255);
return sf::Color(150, 80, 220, alpha);
}
dist++;

@ -6,8 +6,8 @@
#include "RayCaster.h"
#include <Map.h>
const int WINDOW_X = 600;
const int WINDOW_Y = 600;
const int WINDOW_X = 200;
const int WINDOW_Y = 200;
float elap_time(){
@ -27,23 +27,44 @@ float elap_time(){
sf::Sprite window_sprite;
sf::Texture window_texture;
// Y: -1.57 is straight up
// Y: 1.57 is straight down
void test_ray_reflection(){
sf::Vector3f r(0.588, -0.78, -0.196);
sf::Vector3f i(0, 0.928, 0.37);
// is this needed? free spin but bounded 0 < z < pi
if (i.z > PI)
i.z -= PI;
else if (i.z < 0)
i.z += PI;
std::cout << AngleBetweenVectors(r, i);
return;
}
int main() {
// Initialize the render window
sf::RenderWindow window(sf::VideoMode(WINDOW_X, WINDOW_Y), "SFML");
// Initialize the render window
sf::RenderWindow window(sf::VideoMode(WINDOW_X, WINDOW_Y), "SFML");
// The step size in milliseconds between calls to Update()
// Lets set it to 16.6 milliseonds (60FPS)
float step_size = 0.0166f;
// The step size in milliseconds between calls to Update()
// Lets set it to 16.6 milliseonds (60FPS)
float step_size = 0.0166f;
// Timekeeping values for the loop
double frame_time = 0.0,
elapsed_time = 0.0,
delta_time = 0.0,
accumulator_time = 0.0,
current_time = 0.0;
// Timekeeping values for the loop
double frame_time = 0.0,
elapsed_time = 0.0,
delta_time = 0.0,
accumulator_time = 0.0,
current_time = 0.0;
fps_counter fps;
fps_counter fps;
// ============================= RAYCASTER SETUP ==================================
@ -52,7 +73,7 @@ int main() {
window_sprite.setPosition(0, 0);
// State values
sf::Vector3i map_dim(200, 200, 200);
sf::Vector3i map_dim(50, 50, 50);
sf::Vector2i view_res(WINDOW_X, WINDOW_Y);
sf::Vector3f cam_dir(1.0f, 0.0f, 1.57f);
sf::Vector3f cam_pos(50, 50, 50);
@ -147,10 +168,12 @@ int main() {
// Take away a step from the accumulator
accumulator_time -= step_size;
// And update the application for the amount of time alotted for one step
// Update(step_size);
}
map->moveLight(sf::Vector2f(0.3, 0));
window.clear(sf::Color::Black);

Loading…
Cancel
Save