#include "Map.h" int BitCount(unsigned int u) { unsigned int uCount; uCount = u - ((u >> 1) & 033333333333) - ((u >> 2) & 011111111111); return ((uCount + (uCount >> 3)) & 030707070707) % 63; } void SetBit(int position, char* c) { *c |= 1 << position; } void FlipBit(int position, char* c) { *c ^= 1 << position; } int GetBit(int position, char* c) { return (*c >> position) & 1; } void SetBit(int position, uint64_t* c) { *c |= 1 << position; } void FlipBit(int position, uint64_t* c) { *c ^= 1 << position; } int GetBit(int position, uint64_t* c) { return (*c >> position) & 1; } bool CheckLeafSign(const uint64_t descriptor) { uint64_t valid_mask = 0xFF0000; // Return true if all 1's, false if contiguous 0's if ((descriptor & valid_mask) == valid_mask) { return true; } if ((descriptor & valid_mask) == 0) { return false; } // Error out, something funky abort(); } bool CheckContiguousValid(const uint64_t c) { uint64_t bitmask = 0xFF0000; return (c & bitmask) == bitmask; } bool IsLeaf(const uint64_t descriptor) { uint64_t leaf_mask = 0xFF000000; uint64_t valid_mask = 0xFF0000; // Check for contiguous valid values of either 0's or 1's if (((descriptor & valid_mask) == valid_mask) || ((descriptor & valid_mask) == 0)) { // Check for a full leaf mask // Only if valid and leaf are contiguous, then it's a leaf if ((descriptor & leaf_mask) == leaf_mask) return true; else return false; } else return false; } Map::Map(sf::Vector3i position) { load_unload(position); for (int i = 0; i < 1024; i++) { block[i] = 0; } for (int i = 0; i < OCT_DIM * OCT_DIM * OCT_DIM; i++) { if (rand() % 8 > 2) voxel_data[i] = 0; else voxel_data[i] = 1; } } uint64_t Map::generate_children(sf::Vector3i pos, int dim) { // The 8 subvoxel coords starting from the 1th direction, the direction of the origin of the 3d grid // XY, Z++, XY std::vector v = { sf::Vector3i(pos.x, pos.y, pos.z), sf::Vector3i(pos.x + dim, pos.y, pos.z), sf::Vector3i(pos.x, pos.y + dim, pos.z), sf::Vector3i(pos.x + dim, pos.y + dim, pos.z), sf::Vector3i(pos.x, pos.y, pos.z + dim), sf::Vector3i(pos.x + dim, pos.y, pos.z + dim), sf::Vector3i(pos.x, pos.y + dim, pos.z + dim), sf::Vector3i(pos.x + dim, pos.y + dim, pos.z + dim) }; if (dim == 1) { // Return the base 2x2 leaf node uint64_t tmp = 0; // These don't bound check, should they? // Setting the individual valid mask bits for (int i = 0; i < v.size(); i++) { if (getVoxel(v.at(i))) SetBit(i + 16, &tmp); } // Set the leaf mask to full tmp |= 0xFF000000; // The CP will be left blank, contours will be added maybe return tmp; } else { uint64_t tmp = 0; uint64_t child = 0; std::vector children; // Generate down the recursion, returning the descriptor of the current node for (int i = 0; i < v.size(); i++) { // Get the child descriptor from the i'th to 8th subvoxel child = generate_children(v.at(i), dim / 2); if (IsLeaf(child)) { if (CheckLeafSign(child)) SetBit(i + 16, &tmp); SetBit(i + 16 + 8, &tmp); } else { SetBit(i + 16, &tmp); children.push_back(child); } } //1111111111111111111111111111111111111111111111110111111111000000 // Now put those values onto the block stack, it returns the // 16 bit topmost pointer to the block. The 16th bit being // a switch to jump to a far pointer. tmp |= a.copy_to_stack(children); return tmp; } return 0; } void Map::generate_octree() { generate_children(sf::Vector3i(0, 0, 0), OCT_DIM); for (int i = 32767; i >= 31767; i--) { std::cout << i; PrettyPrintUINT64(a.dat[i]); } // levels defines how many levels to traverse before we hit raw data // Will be the map width I presume. Will still need to handle how to swap in and out data. // Possible have some upper static nodes that will stay full regardless of contents? int levels = static_cast(log2(64)); std::list parent_stack; int byte_pos = 0; unsigned int parent = 0; for (int i = 0; i < 16; i++) { parent ^= 1 << i; } unsigned int leafmask = 255; unsigned int validmask = leafmask << 8; parent &= validmask; parent &= leafmask; std::cout << BitCount(parent & leafmask); unsigned int children[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; } void Map::load_unload(sf::Vector3i world_position) { sf::Vector3i chunk_pos(world_to_chunk(world_position)); //Don't forget the middle chunk if (chunk_map.find(chunk_pos) == chunk_map.end()) { chunk_map[chunk_pos] = Chunk(5); } for (int x = chunk_pos.x - chunk_radius / 2; x < chunk_pos.x + chunk_radius / 2; x++) { for (int y = chunk_pos.y - chunk_radius / 2; y < chunk_pos.y + chunk_radius / 2; y++) { for (int z = chunk_pos.z - chunk_radius / 2; z < chunk_pos.z + chunk_radius / 2; z++) { if (chunk_map.find(sf::Vector3i(x, y, z)) == chunk_map.end()) { chunk_map.emplace(sf::Vector3i(x, y, z), Chunk(rand() % 6)); //chunk_map[sf::Vector3i(x, y, z)] = Chunk(rand() % 6); } } } } } void Map::load_single(sf::Vector3i world_position) { sf::Vector3i chunk_pos(world_to_chunk(world_position)); //Don't forget the middle chunk if (chunk_map.find(chunk_pos) == chunk_map.end()) { chunk_map[chunk_pos] = Chunk(0); } } sf::Vector3i Map::getDimensions() { return sf::Vector3i(0, 0, 0); } void Map::setVoxel(sf::Vector3i world_position, int val) { load_single(world_position); sf::Vector3i chunk_pos(world_to_chunk(world_position)); sf::Vector3i in_chunk_pos( world_position.x % CHUNK_DIM, world_position.y % CHUNK_DIM, world_position.z % CHUNK_DIM ); chunk_map.at(chunk_pos).voxel_data[in_chunk_pos.x + CHUNK_DIM * (in_chunk_pos.y + CHUNK_DIM * in_chunk_pos.z)] = val; } char Map::getVoxel(sf::Vector3i pos){ return voxel_data[pos.x + OCT_DIM * (pos.y + OCT_DIM * pos.z)]; } void Chunk::set(int type) { for (int i = 0; i < CHUNK_DIM * CHUNK_DIM * CHUNK_DIM; i++) { voxel_data[i] = 0; } for (int x = 0; x < CHUNK_DIM; x+=2) { for (int y = 0; y < CHUNK_DIM; y+=2) { //list[x + dim.x * (y + dim.z * z)] voxel_data[x + CHUNK_DIM * (y + CHUNK_DIM * 1)] = type; } } }