__kernel void min_kern( global char* map, global int3* map_dim, global int2* resolution, global float3* projection_matrix, global float3* cam_dir, global float3* cam_pos, __write_only image2d_t image ){ size_t id = get_global_id(0); int2 pixel = {id % resolution->x, id / resolution->x}; float3 ray_dir = projection_matrix[pixel.x + resolution->x * pixel.y]; ray_dir = (float3)( ray_dir.z * sin(cam_dir->y) + ray_dir.x * cos(cam_dir->y), ray_dir.y, ray_dir.z * cos(cam_dir->y) - ray_dir.x * sin(cam_dir->y) ); ray_dir = (float3)( ray_dir.x * cos(cam_dir->z) - ray_dir.y * sin(cam_dir->z), ray_dir.x * sin(cam_dir->z) + ray_dir.y * cos(cam_dir->z), ray_dir.z ); // Setup the voxel step based on what direction the ray is pointing int3 voxel_step = {1, 1, 1}; voxel_step.x *= (ray_dir.x > 0) - (ray_dir.x < 0); voxel_step.y *= (ray_dir.y > 0) - (ray_dir.y < 0); voxel_step.z *= (ray_dir.z > 0) - (ray_dir.z < 0); // Setup the voxel coords from the camera origin int3 voxel = { floor(cam_pos->x), floor(cam_pos->y), floor(cam_pos->z) }; // Delta T is the units a ray must travel along an axis in order to // traverse an integer split float3 delta_t = { fabs(1.0f / ray_dir.x), fabs(1.0f / ray_dir.y), fabs(1.0f / ray_dir.z) }; // Intersection T is the collection of the next intersection points // for all 3 axis XYZ. float3 intersection_t = { delta_t.x, delta_t.y, delta_t.z }; int2 randoms = { 3, 7 }; uint seed = randoms.x + id; uint t = seed ^ (seed << 11); uint result = randoms.y ^ (randoms.y >> 19) ^ (t ^ (t >> 8)); int max_dist = 500 + result % 50; int dist = 0; int face = -1; // X:0, Y:1, Z:2 int3 mask = { 0, 0, 0 }; // Andrew Woo's raycasting algo do { mask = intersection_t.xyz <= min(intersection_t.yzx, intersection_t.zxy); float3 thing = delta_t * fabs(convert_float3(mask.xyz)); intersection_t += delta_t * fabs(convert_float3(mask.xyz)); voxel.xyz += voxel_step.xyz * mask.xyz; // If the ray went out of bounds int3 overshoot = voxel.xyz <= map_dim->xyz; int3 undershoot = voxel > 0; if (overshoot.x == 0 || overshoot.y == 0 || overshoot.z == 0){ write_imagef(image, pixel, (float4)(.50 * abs(overshoot.x), .50 * abs(overshoot.y), .50 * abs(overshoot.z), 1)); return; } if (undershoot.x == 0 || undershoot.y == 0 || undershoot.z == 0) { write_imagef(image, pixel, (float4)(.1 * abs(undershoot.x), .80 * abs(undershoot.y), .20 * abs(undershoot.z), 1)); return; } // If we hit a voxel int index = voxel.x + map_dim->x * (voxel.y + map_dim->z * voxel.z); int voxel_data = map[index]; if (voxel_data != 0) { switch (voxel_data) { case 1: write_imagef(image, pixel, (float4)(.50, .00, .00, 1)); return; case 2: write_imagef(image, pixel, (float4)(.00, .50, .40, 1.00)); //if (id == 249000) // printf("%i\n", voxel_data); return; case 3: write_imagef(image, pixel, (float4)(.00, .00, .50, 1.00)); return; case 4: write_imagef(image, pixel, (float4)(.25, .00, .25, 1.00)); return; case 5: write_imagef(image, pixel, (float4)(.10, .30, .80, 1.00)); return; case 6: write_imagef(image, pixel, (float4)(.30, .80, .10, 1.00)); return; } } dist++; } while (dist < max_dist); write_imagef(image, pixel, (float4)(.00, .00, .00, .00)); return; }