|
|
|
from svgpathtools import svg2paths, Line, QuadraticBezier, CubicBezier
|
|
|
|
import numpy as np
|
|
|
|
import bezier, math
|
|
|
|
|
|
|
|
|
|
|
|
def triangulate_lengths(settings, dest_xy):
|
|
|
|
|
|
|
|
# get the desired length of the left pulley wire
|
|
|
|
b = (settings.left_pulley_x_offset + (settings.pulley_diameter/2) + dest_xy[0])
|
|
|
|
a = dest_xy[1] + settings.pulley_y_droop
|
|
|
|
desired_left_line_length = math.sqrt(pow(a, 2) + pow(b, 2))
|
|
|
|
|
|
|
|
# get the desired length of the right pulley wire
|
|
|
|
b = (settings.right_pulley_x_offset - (settings.pulley_diameter/2) + dest_xy[0])
|
|
|
|
a = dest_xy[1] + settings.pulley_y_droop
|
|
|
|
desired_right_line_length = math.sqrt(pow(a, 2) + pow(b, 2))
|
|
|
|
|
|
|
|
return desired_left_line_length, desired_right_line_length
|
|
|
|
|
|
|
|
|
|
|
|
def untriangulate_lengths(settings, x, y):
|
|
|
|
result = [0, 0]
|
|
|
|
|
|
|
|
if x > 0:
|
|
|
|
result[0] = (settings.distance_between_centers * settings.distance_between_centers - y * y + x * x) / (2 * x)
|
|
|
|
try:
|
|
|
|
result[1] = math.sqrt(settings.distance_between_centers * settings.distance_between_centers - result[0] * result[0])
|
|
|
|
except:
|
|
|
|
result[1] = 10
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
class Svg2GcodeConverter:
|
|
|
|
|
|
|
|
def __init__(self, settings):
|
|
|
|
|
|
|
|
self.settings = settings
|
|
|
|
|
|
|
|
# First cycle base case flag
|
|
|
|
self.started = False
|
|
|
|
|
|
|
|
self.gcode_preamble = '''
|
|
|
|
G91 ; Set to relative mode for the initial pen lift
|
|
|
|
G1 Z1 ; Lift head by 1
|
|
|
|
G0 F{1} ; Set the feed rate
|
|
|
|
G1 Z{0} ; Move the pen to just above the paper
|
|
|
|
G90
|
|
|
|
G92 X337.87 Y372.36
|
|
|
|
'''.format(1, self.settings.speed)
|
|
|
|
|
|
|
|
self.gcode_end = '''
|
|
|
|
G1 Z{0} F7000 ; Raise the pen
|
|
|
|
'''.format(1)
|
|
|
|
|
|
|
|
# From an input svg file, convert the vector svg paths to gcode tool paths
|
|
|
|
def convert_gcode(self):
|
|
|
|
|
|
|
|
# read in the svg
|
|
|
|
paths, attributes = svg2paths("tmp/conversion-output.svg")
|
|
|
|
|
|
|
|
# Find the scale value by resizing based on the svg bounding size
|
|
|
|
bounding_x_max = None
|
|
|
|
bounding_x_min = None
|
|
|
|
bounding_y_max = None
|
|
|
|
bounding_y_min = None
|
|
|
|
|
|
|
|
for path in paths:
|
|
|
|
|
|
|
|
bbox = path.bbox()
|
|
|
|
|
|
|
|
if bounding_x_max is None:
|
|
|
|
bounding_x_max = bbox[0]
|
|
|
|
if bounding_x_min is None:
|
|
|
|
bounding_x_min = bbox[1]
|
|
|
|
if bounding_y_max is None:
|
|
|
|
bounding_y_max = bbox[2]
|
|
|
|
if bounding_y_min is None:
|
|
|
|
bounding_y_min = bbox[3]
|
|
|
|
|
|
|
|
bounding_x_min = min(bbox[0], bounding_x_min)
|
|
|
|
bounding_x_max = max(bbox[1], bounding_x_max)
|
|
|
|
|
|
|
|
bounding_y_min = max(bbox[2], bounding_y_min)
|
|
|
|
bounding_y_max = max(bbox[3], bounding_y_max)
|
|
|
|
|
|
|
|
print("Maximum X : {:.2f}".format(bounding_x_max))
|
|
|
|
print("Minimum Y : {:.2f}".format(bounding_x_min))
|
|
|
|
print("Maximum X : {:.2f}".format(bounding_y_max))
|
|
|
|
print("Minimum Y : {:.2f}".format(bounding_y_min))
|
|
|
|
|
|
|
|
max_x_dim = max(bounding_x_max, bounding_x_min)
|
|
|
|
max_y_dim = max(bounding_y_max, bounding_y_min)
|
|
|
|
|
|
|
|
scale_x = self.settings.canvas_x / max_x_dim
|
|
|
|
scale_y = self.settings.canvas_y / max_y_dim
|
|
|
|
|
|
|
|
scale = min(scale_x, scale_y)
|
|
|
|
print("Scaling to : {:.5f}\n".format(scale))
|
|
|
|
|
|
|
|
# Start the gcode
|
|
|
|
gcode = ""
|
|
|
|
gcode += self.gcode_preamble
|
|
|
|
|
|
|
|
current_position = (self.settings.canvas_x/2, self.settings.pulley_y_droop)
|
|
|
|
|
|
|
|
# Walk through the paths and create the GCODE
|
|
|
|
for path in paths:
|
|
|
|
|
|
|
|
previous_x = None
|
|
|
|
previous_y = None
|
|
|
|
|
|
|
|
for part in path:
|
|
|
|
|
|
|
|
start = part.start
|
|
|
|
end = part.end
|
|
|
|
|
|
|
|
start_x = start.real * scale
|
|
|
|
start_y = start.imag * scale
|
|
|
|
|
|
|
|
end_x = end.real * scale
|
|
|
|
end_y = end.imag * scale
|
|
|
|
|
|
|
|
# Check to see if the endpoint of the last cycle continues and whether we need to lift the pen or not
|
|
|
|
lift = True
|
|
|
|
if previous_x is not None and previous_y is not None:
|
|
|
|
if abs(start.real - previous_x) < 30 and abs(start.imag - previous_y) < 30:
|
|
|
|
lift = False
|
|
|
|
|
|
|
|
# if the pen needs to lift,
|
|
|
|
# if lift:
|
|
|
|
previous_x = end.real
|
|
|
|
previous_y = end.imag
|
|
|
|
|
|
|
|
if lift:
|
|
|
|
gcode += "G1 Z{:.3f}\n".format(1)
|
|
|
|
else:
|
|
|
|
gcode += "; NOT LIFTING [{}]\n".format(self.settings.lift_counter)
|
|
|
|
|
|
|
|
if isinstance(part, CubicBezier):
|
|
|
|
|
|
|
|
nodes = np.asfortranarray([
|
|
|
|
[start.real, part.control1.real, part.control2.real, end.real],
|
|
|
|
[start.imag, part.control1.imag, part.control2.imag, end.imag],
|
|
|
|
])
|
|
|
|
|
|
|
|
curve = bezier.Curve.from_nodes(nodes)
|
|
|
|
|
|
|
|
evals = []
|
|
|
|
pos = np.linspace(0.1, 1, 3)
|
|
|
|
for i in pos:
|
|
|
|
evals.append(curve.evaluate(i))
|
|
|
|
|
|
|
|
|
|
|
|
#gcode += "G1 X{:.3f} Y{:.3f}\n".format(start_x, start_y)
|
|
|
|
|
|
|
|
lengths = triangulate_lengths(self.settings, (start_x, start_y))
|
|
|
|
gcode += "G1 X{:.3f} Y{:.3f}\n".format(lengths[0], lengths[1])
|
|
|
|
gcode += "G1 Z{:.3f} \n".format(0)
|
|
|
|
|
|
|
|
for i in evals:
|
|
|
|
x = i[0][0]
|
|
|
|
y = i[1][0]
|
|
|
|
tmp_len = triangulate_lengths(self.settings, (x * scale, y * scale))
|
|
|
|
gcode += "G1 X{:.3f} Y{:.3f}\n".format(tmp_len[0], tmp_len[1])
|
|
|
|
|
|
|
|
if isinstance(part, Line):
|
|
|
|
start_len = triangulate_lengths(self.settings, (start_x, start_y))
|
|
|
|
end_len = triangulate_lengths(self.settings, (end_x, end_y))
|
|
|
|
gcode += "G1 X{:.3f} Y{:.3f}\n".format(start_len[0], start_len[1])
|
|
|
|
gcode += "G1 Z{:.3f} \n".format(0)
|
|
|
|
gcode += "G1 X{:.3f} Y{:.3f}\n".format(end_len[0], end_len[1])
|
|
|
|
|
|
|
|
gcode += self.gcode_end
|
|
|
|
|
|
|
|
output_gcode = open("output/gcode-output.gcode", "w")
|
|
|
|
output_gcode.write(gcode)
|
|
|
|
output_gcode.close()
|