parent
3b74e57e1d
commit
a8d9efb6bb
@ -1,212 +1,296 @@
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
|
||||
touch_height = 20
|
||||
raise_height = 2
|
||||
head_x_offset = 50
|
||||
speed = 500
|
||||
lift_markers = True
|
||||
|
||||
PREAMBLE = '''
|
||||
G1 Z20
|
||||
M107
|
||||
M190 S0
|
||||
M104 S0
|
||||
G28 ; home all axes
|
||||
G0 F{1}
|
||||
G1 Z{0}
|
||||
G1 Z{0}
|
||||
'''.format(touch_height + raise_height, speed)
|
||||
|
||||
FINISH = """
|
||||
G1 Z{0} F7000
|
||||
M104 S0
|
||||
G28 X0 Y0
|
||||
M84
|
||||
""".format(75)
|
||||
|
||||
import cairo, subprocess, bezier, os
|
||||
from tkinter import Tk, Label, filedialog, Button
|
||||
from PIL import Image, ImageTk
|
||||
from svgpathtools import svg2paths, Line, QuadraticBezier, CubicBezier
|
||||
import cairo, subprocess, bezier, os, math, time
|
||||
import numpy as np
|
||||
|
||||
# Setup the file structure
|
||||
if not os.path.exists("output"):
|
||||
os.makedirs("output")
|
||||
|
||||
# Convert the bmp to a vector svg
|
||||
file_name = "geom"
|
||||
|
||||
subprocess.call(["mogrify", "-format", "bmp", "input-images/{}.svg".format(file_name)])
|
||||
|
||||
subprocess.call(["mkbitmap", "input-images/{}.bmp".format(file_name), "-x",
|
||||
"-f", "15",
|
||||
#"-b", "0",
|
||||
"-o", "input-images/{}-n.bmp".format(file_name)
|
||||
])
|
||||
|
||||
subprocess.call(["potrace",
|
||||
"-t", "20",
|
||||
"-z", "white",
|
||||
"-b", "svg",
|
||||
"input-images/{}-n.bmp".format(file_name),
|
||||
"--rotate", "90",
|
||||
"-o", "tmp/conversion-output.svg",
|
||||
])
|
||||
|
||||
# read in the svg
|
||||
paths, attributes = svg2paths("tmp/conversion-output.svg")
|
||||
|
||||
gcode = ""
|
||||
gcode += PREAMBLE
|
||||
|
||||
started = False
|
||||
|
||||
scale = 0.0045
|
||||
offset_x = 75 + head_x_offset
|
||||
offset_y = 20
|
||||
|
||||
|
||||
# Walk through the paths and create the GCODE
|
||||
for path in paths:
|
||||
|
||||
previous_x = None
|
||||
previous_y = None
|
||||
|
||||
# rotated = path.rotated(90)
|
||||
|
||||
for part in path:
|
||||
|
||||
start = part.start
|
||||
end = part.end
|
||||
|
||||
start_x = start.real * scale + offset_x
|
||||
start_y = start.imag * scale + offset_y
|
||||
|
||||
end_x = end.real * scale + offset_x
|
||||
end_y = end.imag * scale + offset_y
|
||||
|
||||
# Check to see if the endpoint of the last cycle continues and wether we need to lift the pen or not
|
||||
lift = True
|
||||
if previous_x is not None and previous_y is not None:
|
||||
if abs(start.real - previous_x) < 30 and abs(start.imag - previous_y) < 30:
|
||||
lift = False
|
||||
|
||||
# if the pen needs to lift,
|
||||
# if lift:
|
||||
previous_x = end.real
|
||||
previous_y = end.imag
|
||||
|
||||
if lift:
|
||||
gcode += "G1 Z{}\n".format(raise_height + touch_height)
|
||||
else:
|
||||
gcode += "# NOT LIFTING\n"
|
||||
|
||||
if isinstance(part, CubicBezier):
|
||||
|
||||
nodes = np.asfortranarray([
|
||||
[start.real, part.control1.real, part.control2.real, end.real],
|
||||
[start.imag, part.control1.imag, part.control2.imag, end.imag],
|
||||
])
|
||||
|
||||
curve = bezier.Curve.from_nodes(nodes)
|
||||
|
||||
evals = []
|
||||
pos = np.linspace(0.1, 1, 10)
|
||||
for i in pos:
|
||||
evals.append(curve.evaluate(i))
|
||||
|
||||
class GCoder(Tk):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
# Setup the file structure
|
||||
if not os.path.exists("output"):
|
||||
os.makedirs("output")
|
||||
|
||||
# Height at which the pen touches and draws on the surface
|
||||
self.touch_height = 20
|
||||
# How far to raise the pen tip to raise it off the page
|
||||
self.raise_height = 2
|
||||
# The inherent offset from true 0 we have from the pen bracket
|
||||
self.head_x_offset = 50
|
||||
# XY movement speed
|
||||
self.speed = 500
|
||||
# Weather we render lift markers
|
||||
self.lift_markers = True
|
||||
|
||||
# X and Y offsets to place the image on A11 paper
|
||||
self.offset_x = 75 + self.head_x_offset
|
||||
self.offset_y = 20
|
||||
|
||||
# Bed dimensions to fit A11 paper
|
||||
self.bed_max_x = 280
|
||||
self.bed_min_x = self.offset_x
|
||||
self.bed_max_y = 280
|
||||
self.bed_min_y = 20
|
||||
self.started = False
|
||||
|
||||
self.gcode_preamble = '''
|
||||
G91 ; Set to relative mode for the initial pen lift
|
||||
G1 Z20 ; Lift head by 20
|
||||
G90 ; Set back to absolute position mode
|
||||
M107 ; Fan off
|
||||
M190 S0 ; Set bed temp
|
||||
M104 S0 ; Set nozzle temp
|
||||
G28 ; home all axes
|
||||
G0 F{1} ; Set the feed rate
|
||||
G1 Z{0} ; Move the pen to just above the paper
|
||||
'''.format(self.touch_height + self.raise_height, self.speed)
|
||||
|
||||
self.gcode_end = '''
|
||||
G1 Z{0} F7000 ; Raise the pen high up so we can fit a cap onto it
|
||||
M104 S0 ; Set the nozzle to 0
|
||||
G28 X0 Y0 ; Home back to (0,0) for (x,y)
|
||||
M84 ; Turn off the motors
|
||||
'''.format(75)
|
||||
|
||||
w, h = 300, 300
|
||||
|
||||
self.geometry("{}x{}".format(w, h))
|
||||
|
||||
self.surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, 300, 300)
|
||||
|
||||
self.context = cairo.Context(self.surface)
|
||||
self.context.scale(1, 1)
|
||||
self.context.set_line_width(0.4)
|
||||
|
||||
|
||||
self.button = Button(self, text="Select Image", command=self.file_select_callback)
|
||||
self.button.pack()
|
||||
|
||||
self.mainloop()
|
||||
|
||||
def file_select_callback(self):
|
||||
filepath = filedialog.askopenfilename(initialdir=".", title="Select file",
|
||||
filetypes=(("jpeg files", "*.jpg"), ("all files", "*.*")))
|
||||
if len(filepath) is 0:
|
||||
return
|
||||
|
||||
self.context.rectangle(0, 0, 300, 300)
|
||||
self.context.set_source_rgba(1, 1, 1, 1.0)
|
||||
self.context.fill()
|
||||
|
||||
self.context.set_source_rgba(0, 0, 0, 1.0)
|
||||
|
||||
filename = os.path.basename(filepath)
|
||||
self.convert_image(filename)
|
||||
self.convert_gcode()
|
||||
self.render_gcode()
|
||||
|
||||
self._image_ref = ImageTk.PhotoImage(
|
||||
Image.frombuffer("RGBA", (300, 300), self.surface.get_data().tobytes(), "raw", "BGRA", 0, 1))
|
||||
self.label = Label(self, image=self._image_ref)
|
||||
self.label.pack(expand=True, fill="both")
|
||||
|
||||
def convert_image(self, file_name):
|
||||
|
||||
base_name = file_name.split(".")[0]
|
||||
|
||||
print("Converting input file [{}]".format(file_name))
|
||||
|
||||
print("Running mogrify...")
|
||||
start = time.time()
|
||||
subprocess.call(["mogrify", "-format", "bmp", "input-images/{}".format(file_name)])
|
||||
print("Run took [{:.2f}] seconds".format(time.time() - start))
|
||||
|
||||
print("Running mkbitmap...")
|
||||
start = time.time()
|
||||
subprocess.call(["mkbitmap", "input-images/{}.bmp".format(base_name), "-x",
|
||||
"-f", "15",
|
||||
# "-b", "0",
|
||||
"-o", "input-images/{}-n.bmp".format(base_name)
|
||||
])
|
||||
print("Run took [{:.2f}] seconds".format(time.time() - start))
|
||||
|
||||
print("Running potrace...")
|
||||
start = time.time()
|
||||
subprocess.call(["potrace",
|
||||
"-t", "20",
|
||||
"-z", "white",
|
||||
"-b", "svg",
|
||||
"input-images/{}-n.bmp".format(base_name),
|
||||
"--rotate", "0",
|
||||
"-o", "tmp/conversion-output.svg",
|
||||
])
|
||||
print("Run took [{:.2f}] seconds\n".format(time.time() - start))
|
||||
|
||||
def render_gcode(self):
|
||||
|
||||
file = open("output/gcode-output.gcode", "r")
|
||||
|
||||
largest_x = 0
|
||||
largest_y = 0
|
||||
smallest_x = 300
|
||||
smallest_y = 300
|
||||
x = None
|
||||
y = None
|
||||
|
||||
for line in file:
|
||||
|
||||
split = line.split(" ")
|
||||
command = split[0]
|
||||
operands = split[1:]
|
||||
|
||||
prev_x = x
|
||||
prev_y = y
|
||||
|
||||
gcode += "G1 X{} Y{}\n".format(start_x, start_y)
|
||||
gcode += "G1 Z{} \n".format(touch_height)
|
||||
if command == "G1":
|
||||
for operand in operands:
|
||||
if operand.startswith("X"):
|
||||
x = float(operand[1:])
|
||||
if x > largest_x: largest_x = x
|
||||
if x < smallest_x: smallest_x = x
|
||||
elif operand.startswith("Y"):
|
||||
y = float(operand[1:])
|
||||
if y > largest_y: largest_y = y
|
||||
if y < smallest_y: smallest_y = y
|
||||
elif operand.startswith("Z{}".format(self.touch_height + self.raise_height)):
|
||||
|
||||
for i in evals:
|
||||
x = i[0][0]
|
||||
y = i[1][0]
|
||||
gcode += "G1 X{} Y{}\n".format(x * scale + offset_x, y * scale + offset_y)
|
||||
# signify a lift
|
||||
if prev_x is not None and prev_y is not None and self.lift_markers:
|
||||
self.context.arc(prev_x - self.head_x_offset, prev_y, 0.5, 0, 2*math.pi)
|
||||
self.context.stroke()
|
||||
|
||||
prev_x = None
|
||||
prev_y = None
|
||||
x = None
|
||||
y = None
|
||||
|
||||
if (prev_x != x and prev_x is not None) or (prev_y != y and prev_y is not None):
|
||||
self.context.line_to(prev_x - self.head_x_offset, prev_y)
|
||||
self.context.line_to(x - self.head_x_offset, y)
|
||||
self.context.stroke()
|
||||
|
||||
|
||||
print("Largest X : " + str(largest_x))
|
||||
print("Smallest X : " + str(smallest_x))
|
||||
|
||||
#gcode += "G1 X{} Y{}\n".format(end.real * scale + offset_x, end.imag * scale + offset_y)
|
||||
print("Largest Y : " + str(largest_y))
|
||||
print("Smallest Y : " + str(smallest_y))
|
||||
|
||||
if largest_x > self.bed_max_x:
|
||||
print("X OVERFLOW")
|
||||
if largest_y > self.bed_max_y:
|
||||
print("Y OVERFLOW")
|
||||
|
||||
if smallest_x < self.bed_min_x:
|
||||
print("X_UNDERFLOW")
|
||||
if smallest_y < self.bed_min_y:
|
||||
print("Y_UNDERFLOW")
|
||||
|
||||
def convert_gcode(self):
|
||||
|
||||
# read in the svg
|
||||
paths, attributes = svg2paths("tmp/conversion-output.svg")
|
||||
|
||||
bounding_x_max = None
|
||||
bounding_x_min = None
|
||||
bounding_y_max = None
|
||||
bounding_y_min = None
|
||||
|
||||
for path in paths:
|
||||
|
||||
bbox = path.bbox()
|
||||
|
||||
if bounding_x_max is None or bbox[0] > bounding_x_max:
|
||||
bounding_x_max = bbox[0]
|
||||
if bounding_x_min is None or bbox[1] < bounding_x_min:
|
||||
bounding_x_min = bbox[1]
|
||||
|
||||
if bounding_y_max is None or bbox[2] > bounding_y_max:
|
||||
bounding_y_max = bbox[2]
|
||||
if bounding_y_min is None or bbox[3] > bounding_y_min:
|
||||
bounding_y_min = bbox[3]
|
||||
|
||||
print("Maximum X : {}".format(bounding_x_max))
|
||||
print("Minimum Y : {}".format(bounding_x_min))
|
||||
print("Maximum X : {}".format(bounding_y_max))
|
||||
print("Minimum Y : {}".format(bounding_y_min))
|
||||
|
||||
max_dim = max(bounding_x_max, bounding_x_min, bounding_y_max, bounding_y_min)
|
||||
scale = (300 - self.offset_x) / max_dim
|
||||
print("Scaling to : {}\n".format(scale))
|
||||
|
||||
if isinstance(part, Line):
|
||||
gcode += "G1 X{} Y{}\n".format(start_x, start_y)
|
||||
gcode += "G1 Z{} \n".format(touch_height)
|
||||
gcode += "G1 X{} Y{}\n".format(end_x, end_y)
|
||||
# Start the gcode
|
||||
gcode = ""
|
||||
gcode += self.gcode_preamble
|
||||
|
||||
# Walk through the paths and create the GCODE
|
||||
for path in paths:
|
||||
|
||||
gcode += FINISH
|
||||
previous_x = None
|
||||
previous_y = None
|
||||
|
||||
output_gcode = open("output/gcode-output.gcode", "w")
|
||||
output_gcode.write(gcode)
|
||||
output_gcode.close()
|
||||
for part in path:
|
||||
|
||||
file = open("output/gcode-output.gcode", "r")
|
||||
start = part.start
|
||||
end = part.end
|
||||
|
||||
x = None
|
||||
y = None
|
||||
start_x = start.real * scale + self.offset_x
|
||||
start_y = start.imag * scale + self.offset_y
|
||||
|
||||
with cairo.SVGSurface("rendered-output.svg", 300, 300) as surface:
|
||||
end_x = end.real * scale + self.offset_x
|
||||
end_y = end.imag * scale + self.offset_y
|
||||
|
||||
context = cairo.Context(surface)
|
||||
context.scale(1, 1)
|
||||
context.set_line_width(0.4)
|
||||
# Check to see if the endpoint of the last cycle continues and wether we need to lift the pen or not
|
||||
lift = True
|
||||
if previous_x is not None and previous_y is not None:
|
||||
if abs(start.real - previous_x) < 30 and abs(start.imag - previous_y) < 30:
|
||||
lift = False
|
||||
|
||||
largest_x = 0
|
||||
largest_y = 0
|
||||
smallest_x = 300
|
||||
smallest_y = 300
|
||||
# if the pen needs to lift,
|
||||
# if lift:
|
||||
previous_x = end.real
|
||||
previous_y = end.imag
|
||||
|
||||
for line in file:
|
||||
if lift:
|
||||
gcode += "G1 Z{}\n".format(self.raise_height + self.touch_height)
|
||||
else:
|
||||
gcode += "# NOT LIFTING\n"
|
||||
|
||||
split = line.split(" ")
|
||||
command = split[0]
|
||||
operands = split[1:]
|
||||
if isinstance(part, CubicBezier):
|
||||
|
||||
prev_x = x
|
||||
prev_y = y
|
||||
nodes = np.asfortranarray([
|
||||
[start.real, part.control1.real, part.control2.real, end.real],
|
||||
[start.imag, part.control1.imag, part.control2.imag, end.imag],
|
||||
])
|
||||
|
||||
if command == "G1":
|
||||
for operand in operands:
|
||||
if operand.startswith("X"):
|
||||
x = float(operand[1:])
|
||||
if x > largest_x: largest_x = x
|
||||
if x < smallest_x: smallest_x = x
|
||||
elif operand.startswith("Y"):
|
||||
y = float(operand[1:])
|
||||
if y > largest_y: largest_y = y
|
||||
if y < smallest_y: smallest_y = y
|
||||
elif operand.startswith("Z{}".format(touch_height + raise_height)):
|
||||
curve = bezier.Curve.from_nodes(nodes)
|
||||
|
||||
# signify a lift
|
||||
if prev_x is not None and prev_y is not None and lift_markers:
|
||||
context.arc(prev_x, prev_y, 0.5, 0, 2*math.pi)
|
||||
context.stroke()
|
||||
evals = []
|
||||
pos = np.linspace(0.1, 1, 10)
|
||||
for i in pos:
|
||||
evals.append(curve.evaluate(i))
|
||||
|
||||
prev_x = None
|
||||
prev_y = None
|
||||
x = None
|
||||
y = None
|
||||
gcode += "G1 X{} Y{}\n".format(start_x, start_y)
|
||||
gcode += "G1 Z{} \n".format(self.touch_height)
|
||||
|
||||
if (prev_x != x and prev_x is not None) or (prev_y != y and prev_y is not None):
|
||||
context.line_to(prev_x, prev_y)
|
||||
context.line_to(x, y)
|
||||
context.stroke()
|
||||
for i in evals:
|
||||
x = i[0][0]
|
||||
y = i[1][0]
|
||||
gcode += "G1 X{} Y{}\n".format(x * scale + self.offset_x, y * scale + self.offset_y)
|
||||
|
||||
if isinstance(part, Line):
|
||||
gcode += "G1 X{} Y{}\n".format(start_x, start_y)
|
||||
gcode += "G1 Z{} \n".format(self.touch_height)
|
||||
gcode += "G1 X{} Y{}\n".format(end_x, end_y)
|
||||
|
||||
print("Largest X : " + str(largest_x))
|
||||
print("Largest Y : " + str(largest_y))
|
||||
print("Smallest X : " + str(smallest_x))
|
||||
print("Smallest Y : " + str(smallest_y))
|
||||
gcode += self.gcode_end
|
||||
|
||||
if largest_x > 280:
|
||||
print("X OVERFLOW")
|
||||
if largest_y > 280:
|
||||
print("Y OVERFLOW")
|
||||
output_gcode = open("output/gcode-output.gcode", "w")
|
||||
output_gcode.write(gcode)
|
||||
output_gcode.close()
|
||||
|
||||
if smallest_x < 125:
|
||||
print("X_UNDERFLOW")
|
||||
if smallest_y < 20:
|
||||
print("Y_UNDERFLOW")
|
||||
if __name__ == "__main__":
|
||||
GCoder()
|
||||
|
||||
|
Loading…
Reference in new issue