The entry point takes a borrow of the shader module which is then cloned by the pipeline. So I gotta keep the shader, entry, and modules in a high scope

master
mitchellhansen 6 years ago
parent 2327a7f05f
commit 321f30b4cc

@ -40,6 +40,10 @@ use image::flat::NormalForm::ColumnMajorPacked;
mod compute_kernel; mod compute_kernel;
use crate::vkprocessor::compute_kernel::ComputeKernel; use crate::vkprocessor::compute_kernel::ComputeKernel;
mod shader_kernels;
use crate::vkprocessor::shader_kernels::ShaderKernels;
#[derive(Default, Debug, Clone)] #[derive(Default, Debug, Clone)]
struct tVertex { position: [f32; 2] } struct tVertex { position: [f32; 2] }
@ -68,7 +72,7 @@ fn window_size_dependent_setup(
} }
#[repr(C)] #[repr(C)]
#[derive(Clone)] #[derive(Default, Debug, Clone)]
struct SimpleSpecializationConstants { struct SimpleSpecializationConstants {
first_constant: i32, first_constant: i32,
second_constant: u32, second_constant: u32,
@ -176,7 +180,6 @@ impl<'a> VkProcessor<'a> {
pub fn compile_kernel(&mut self, filename: String) { pub fn compile_kernel(&mut self, filename: String) {
self.compute_kernel = Some(ComputeKernel::new(filename, self.device.clone())); self.compute_kernel = Some(ComputeKernel::new(filename, self.device.clone()));
self.compute_pipeline = Some(self.compute_kernel.clone().unwrap().get_pipeline()); self.compute_pipeline = Some(self.compute_kernel.clone().unwrap().get_pipeline());
} }

@ -116,8 +116,8 @@ impl ComputeKernel {
} }
} }
pub fn recompile_kernel(&mut self) { pub fn recompile_kernel(&mut self) -> std::sync::Arc<ComputePipeline<PipelineLayout<shade_runner::layouts::ComputeLayout>>> {
self.compile_kernel(String::from(self.compute_kernel_path.clone().to_str().unwrap())); self.compile_kernel(String::from(self.compute_kernel_path.clone().to_str().unwrap()))
} }
pub fn compile_kernel(&mut self, filename: String) -> std::sync::Arc<ComputePipeline<PipelineLayout<shade_runner::layouts::ComputeLayout>>> { pub fn compile_kernel(&mut self, filename: String) -> std::sync::Arc<ComputePipeline<PipelineLayout<shade_runner::layouts::ComputeLayout>>> {

@ -0,0 +1,300 @@
use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, DeviceLocalBuffer, ImmutableBuffer, BufferAccess};
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
use vulkano::descriptor::descriptor_set::{PersistentDescriptorSet, StdDescriptorPoolAlloc};
use vulkano::device::{Device, DeviceExtensions, QueuesIter, Queue};
use vulkano::instance::{Instance, InstanceExtensions, PhysicalDevice, QueueFamily};
use vulkano::pipeline::{ComputePipeline, GraphicsPipeline, GraphicsPipelineAbstract};
use vulkano::sync::{GpuFuture, FlushError};
use vulkano::sync;
use std::time::SystemTime;
use std::sync::Arc;
use std::ffi::CStr;
use std::path::PathBuf;
use shade_runner as sr;
use image::{DynamicImage, ImageBuffer};
use image::GenericImageView;
use vulkano::descriptor::pipeline_layout::PipelineLayout;
use image::GenericImage;
use shade_runner::{ComputeLayout, CompileError, FragLayout, FragInput, FragOutput, VertInput, VertOutput, VertLayout, CompiledShaders, Entry};
use vulkano::descriptor::descriptor_set::{PersistentDescriptorSetBuf, PersistentDescriptorSetImg, PersistentDescriptorSetSampler};
use shaderc::CompileOptions;
use vulkano::framebuffer::{Subpass, RenderPass, RenderPassAbstract, Framebuffer, FramebufferAbstract};
use vulkano::pipeline::shader::{GraphicsShaderType, ShaderModule, GraphicsEntryPoint, SpecializationConstants, SpecializationMapEntry};
use vulkano::swapchain::{Swapchain, PresentMode, SurfaceTransform, Surface, SwapchainCreationError, AcquireError};
use vulkano::swapchain::acquire_next_image;
use vulkano::image::swapchain::SwapchainImage;
use winit::{EventsLoop, WindowBuilder, Window, Event, WindowEvent};
use vulkano_win::VkSurfaceBuild;
use vulkano::pipeline::vertex::{SingleBufferDefinition, Vertex};
use vulkano::descriptor::PipelineLayoutAbstract;
use std::alloc::Layout;
use vulkano::pipeline::viewport::Viewport;
use image::ImageFormat;
use vulkano::image::immutable::ImmutableImage;
use vulkano::image::attachment::AttachmentImage;
use vulkano::image::{Dimensions, ImageUsage};
use vulkano::format::Format;
use vulkano::sampler::{Sampler, Filter, MipmapMode, SamplerAddressMode};
use image::flat::NormalForm::ColumnMajorPacked;
use crate::vkprocessor::SimpleSpecializationConstants;
struct EntryPoint<'a> {
compiled_shaders: CompiledShaders,
frag_entry_point: Option<GraphicsEntryPoint<'a, SimpleSpecializationConstants, FragInput, FragOutput, FragLayout>>,
vertex_entry_point: Option<GraphicsEntryPoint<'a, SimpleSpecializationConstants, VertInput, VertOutput, VertLayout>>,
vertex_shader_module: Arc<ShaderModule>,
fragment_shader_module: Arc<ShaderModule>,
}
#[derive(Default, Debug, Clone)]
struct tVertex { position: [f32; 2] }
pub struct ShaderKernels<'a> {
swapchain : Arc<Swapchain<Window>>,
swapchain_images: Vec<Arc<SwapchainImage<Window>>>, // Surface which is drawn to
pub physical: PhysicalDevice<'a>,
shader: CompiledShaders,
options: CompileOptions<'a>,
pub render_pass: Arc<RenderPassAbstract + Send + Sync>,
pub graphics_pipeline: Option<Arc<GraphicsPipelineAbstract + Sync + Send>>,
device: Arc<Device>,
entry_point: EntryPoint<'a>,
}
// return the frame buffers
/*
let mut framebuffers =
window_size_dependent_setup(&self.images.clone().unwrap().clone(),
self.render_pass.clone().unwrap().clone(),
&mut self.dynamic_state);
*/
impl<'a> ShaderKernels<'a> {
fn get_path(filename: String) -> (PathBuf, PathBuf) {
let project_root =
std::env::current_dir()
.expect("failed to get root directory");
let mut shader_path = project_root.clone();
shader_path.push(PathBuf::from("resources/shaders/"));
let mut vertex_shader_path = project_root.clone();
vertex_shader_path.push(PathBuf::from("resources/shaders/"));
vertex_shader_path.push(PathBuf::from(filename.clone() + ".vertex"));
let mut fragment_shader_path = project_root.clone();
fragment_shader_path.push(PathBuf::from("resources/shaders/"));
fragment_shader_path.push(PathBuf::from(filename.clone() + ".fragment"));
(vertex_shader_path, fragment_shader_path)
}
pub fn get_pipeline(&mut self) -> Arc<GraphicsPipelineAbstract + Sync + Send> {
match self.graphics_pipeline.clone() {
Some(t) => t,
None => {
self.graphics_pipeline = Some(Arc::new(
GraphicsPipeline::start()
// We need to indicate the layout of the vertices.
// The type `SingleBufferDefinition` actually contains a template parameter corresponding
// to the type of each vertex. But in this code it is automatically inferred.
.vertex_input_single_buffer::<tVertex>()
// A Vulkan shader can in theory contain multiple entry points, so we have to specify
// which one. The `main` word of `main_entry_point` actually corresponds to the name of
// the entry point.
.vertex_shader(self.entry_point.vertex_entry_point.clone().unwrap(), SimpleSpecializationConstants {
first_constant: 0,
second_constant: 0,
third_constant: 0.0,
})
// The content of the vertex buffer describes a list of triangles.
.triangle_fan()
// Use a resizable viewport set to draw over the entire window
.viewports_dynamic_scissors_irrelevant(1)
// See `vertex_shader`.
.fragment_shader(self.entry_point.frag_entry_point.clone().unwrap(), SimpleSpecializationConstants {
first_constant: 0,
second_constant: 0,
third_constant: 0.0,
})
// We have to indicate which subpass of which render pass this pipeline is going to be used
// in. The pipeline will only be usable from this particular subpass.
.render_pass(Subpass::from(self.render_pass.clone(), 0).unwrap())
// Now that our builder is filled, we call `build()` to obtain an actual pipeline.
.build(self.device.clone())
.unwrap()
));
self.graphics_pipeline.clone().unwrap()
}
}
}
pub fn new(filename: String,
surface: &'a Arc<Surface<Window>>,
queue: Arc<Queue>,
physical: PhysicalDevice<'a>,
device: Arc<Device>) -> ShaderKernels<'a> {
let (mut swapchain, images) = {
let capabilities = surface.capabilities(physical).unwrap();
let usage = capabilities.supported_usage_flags;
let alpha = capabilities.supported_composite_alpha.iter().next().unwrap();
// Choosing the internal format that the images will have.
let format = capabilities.supported_formats[0].0;
// Set the swapchains window dimensions
let initial_dimensions = if let Some(dimensions) = surface.window().get_inner_size() {
// convert to physical pixels
let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
// The window no longer exists so exit the application.
panic!("window closed");
};
Swapchain::new(device.clone(),
surface.clone(),
capabilities.min_image_count,
format,
initial_dimensions,
1, // Layers
usage,
&queue,
SurfaceTransform::Identity,
alpha,
PresentMode::Fifo, true, None).unwrap()
};
let filenames = ShaderKernels::get_path(filename.clone());
// TODO: better compile message, run til successful compile
let shader = sr::load(filenames.0, filenames.1)
.expect("Shader didn't compile");
let vulkano_entry =
sr::parse(&shader)
.expect("failed to parse");
let fragment_shader_module: Arc<ShaderModule> = unsafe {
vulkano::pipeline::shader::ShaderModule::from_words(device.clone(), &shader.fragment.clone())
}.unwrap();
let vertex_shader_module: Arc<ShaderModule> = unsafe {
vulkano::pipeline::shader::ShaderModule::from_words(device.clone(), &shader.vertex.clone())
}.unwrap();
let filenames = ShaderKernels::get_path(filename.clone());
let mut entry_point = EntryPoint {
compiled_shaders: sr::load(filenames.0, filenames.1)
.expect("Shader didn't compile"),
fragment_shader_module: fragment_shader_module,
vertex_shader_module: vertex_shader_module,
frag_entry_point: None,
vertex_entry_point: None,
};
entry_point.frag_entry_point = unsafe {
Some(entry_point.fragment_shader_module.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"),
vulkano_entry.frag_input,
vulkano_entry.frag_output,
vulkano_entry.frag_layout,
GraphicsShaderType::Fragment))
};
entry_point.vertex_entry_point = unsafe {
Some(entry_point.vertex_shader_module.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"),
vulkano_entry.vert_input,
vulkano_entry.vert_output,
vulkano_entry.vert_layout,
GraphicsShaderType::Vertex))
};
let render_pass = Arc::new(vulkano::single_pass_renderpass!(
device.clone(),
attachments: {
// `color` is a custom name we give to the first and only attachment.
color: {
// `load: Clear` means that we ask the GPU to clear the content of this
// attachment at the start of the drawing.
load: Clear,
// `store: Store` means that we ask the GPU to store the output of the draw
// in the actual image. We could also ask it to discard the result.
store: Store,
// `format: <ty>` indicates the type of the format of the image. This has to
// be one of the types of the `vulkano::format` module (or alternatively one
// of your structs that implements the `FormatDesc` trait). Here we use the
// same format as the swapchain.
format: swapchain.clone().format(),
// TODO:
samples: 1,
}
},
pass: {
// We use the attachment named `color` as the one and only color attachment.
color: [color],
// No depth-stencil attachment is indicated with empty brackets.
depth_stencil: {}
}
).unwrap());
vulkano::impl_vertex!(tVertex, position);
// Before we draw we have to create what is called a pipeline. This is similar to an OpenGL
// program, but much more specific.
let pipeline = GraphicsPipeline::start()
// We need to indicate the layout of the vertices.
// The type `SingleBufferDefinition` actually contains a template parameter corresponding
// to the type of each vertex. But in this code it is automatically inferred.
.vertex_input_single_buffer::<tVertex>()
// A Vulkan shader can in theory contain multiple entry points, so we have to specify
// which one. The `main` word of `main_entry_point` actually corresponds to the name of
// the entry point.
.vertex_shader(entry_point.vertex_entry_point.clone().unwrap(), SimpleSpecializationConstants {
first_constant: 0,
second_constant: 0,
third_constant: 0.0,
})
// The content of the vertex buffer describes a list of triangles.
.triangle_fan()
// Use a resizable viewport set to draw over the entire window
.viewports_dynamic_scissors_irrelevant(1)
// See `vertex_shader`.
.fragment_shader(entry_point.frag_entry_point.clone().unwrap(), SimpleSpecializationConstants {
first_constant: 0,
second_constant: 0,
third_constant: 0.0,
})
// We have to indicate which subpass of which render pass this pipeline is going to be used
// in. The pipeline will only be usable from this particular subpass.
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
// Now that our builder is filled, we call `build()` to obtain an actual pipeline.
.build(device.clone())
.unwrap();
ShaderKernels {
swapchain: swapchain,
swapchain_images: images,
physical: physical,
shader: shader,
options: CompileOptions::new().ok_or(CompileError::CreateCompiler).unwrap(),
render_pass: render_pass,
graphics_pipeline: Some(Arc::new(pipeline)),
device: device,
entry_point: entry_point,
}
}
}
Loading…
Cancel
Save