added texture. looks like copying the one from the compute output isn't going to totally work out of the box

master
mitchellhansen 6 years ago
parent 5751965ce3
commit 937b4fc8ca

@ -0,0 +1,7 @@
#version 450
layout(location = 0) in vec2 tex_coords;
layout(location = 0) out vec4 f_color;
layout(set = 0, binding = 0) uniform sampler2D tex;
void main() {
f_color = texture(tex, tex_coords);
}

@ -0,0 +1,7 @@
#version 450
layout(location = 0) in vec2 position;
layout(location = 0) out vec2 tex_coords;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
tex_coords = position;
}

@ -74,7 +74,7 @@ fn main() {
let mut processor = vkprocessor::VkProcessor::new(&instance, &surface);
processor.compile_kernel(String::from("simple-edge.compute"));
processor.compile_shaders(String::from("simple"), &surface);
processor.compile_shaders(String::from("simple_texture"), &surface);
processor.load_buffers(String::from("funky-bird.jpg"));

@ -16,7 +16,7 @@ use image::GenericImageView;
use vulkano::descriptor::pipeline_layout::PipelineLayout;
use image::GenericImage;
use shade_runner::{ComputeLayout, CompileError, FragLayout, FragInput, FragOutput, VertInput, VertOutput, VertLayout};
use vulkano::descriptor::descriptor_set::PersistentDescriptorSetBuf;
use vulkano::descriptor::descriptor_set::{PersistentDescriptorSetBuf, PersistentDescriptorSetImg, PersistentDescriptorSetSampler};
use shaderc::CompileOptions;
use vulkano::framebuffer::{Subpass, RenderPass, RenderPassAbstract, Framebuffer, FramebufferAbstract};
use vulkano::pipeline::shader::{GraphicsShaderType, ShaderModule, GraphicsEntryPoint, SpecializationConstants, SpecializationMapEntry};
@ -29,7 +29,11 @@ use vulkano::pipeline::vertex::{SingleBufferDefinition, Vertex};
use vulkano::descriptor::PipelineLayoutAbstract;
use std::alloc::Layout;
use vulkano::pipeline::viewport::Viewport;
use image::ImageFormat;
use vulkano::image::immutable::ImmutableImage;
use vulkano::image::Dimensions;
use vulkano::format::Format;
use vulkano::sampler::{Sampler, Filter, MipmapMode, SamplerAddressMode};
#[derive(Default, Debug, Clone)]
struct tVertex { position: [f32; 2] }
@ -93,12 +97,14 @@ unsafe impl SpecializationConstants for MySpecConstants {
pub struct VkProcessor<'a> {
pub instance: Arc<Instance>,
pub physical: PhysicalDevice<'a>,
pub pipeline: Option<Arc<GraphicsPipelineAbstract + Sync + Send>>,
pub graphics_pipeline: Option<Arc<GraphicsPipelineAbstract + Sync + Send>>,
pub compute_pipeline: Option<std::sync::Arc<ComputePipeline<PipelineLayout<shade_runner::layouts::ComputeLayout>>>>,
pub device: Arc<Device>,
pub queues: QueuesIter,
pub queue: Arc<Queue>,
pub set: Option<Arc<PersistentDescriptorSet<std::sync::Arc<ComputePipeline<PipelineLayout<shade_runner::layouts::ComputeLayout>>>, ((((), PersistentDescriptorSetBuf<std::sync::Arc<vulkano::buffer::cpu_access::CpuAccessibleBuffer<[u8]>>>), PersistentDescriptorSetBuf<std::sync::Arc<vulkano::buffer::cpu_access::CpuAccessibleBuffer<[u8]>>>), PersistentDescriptorSetBuf<std::sync::Arc<vulkano::buffer::cpu_access::CpuAccessibleBuffer<[u32]>>>)>>>,
pub compute_set: Option<Arc<PersistentDescriptorSet<std::sync::Arc<ComputePipeline<PipelineLayout<shade_runner::layouts::ComputeLayout>>>, ((((), PersistentDescriptorSetBuf<std::sync::Arc<vulkano::buffer::cpu_access::CpuAccessibleBuffer<[u8]>>>), PersistentDescriptorSetBuf<std::sync::Arc<vulkano::buffer::cpu_access::CpuAccessibleBuffer<[u8]>>>), PersistentDescriptorSetBuf<std::sync::Arc<vulkano::buffer::cpu_access::CpuAccessibleBuffer<[u32]>>>)>>>,
pub img_set: Option<Arc<PersistentDescriptorSet<Arc<dyn GraphicsPipelineAbstract + Send + Sync>, (((), PersistentDescriptorSetImg<Arc<ImmutableImage<Format>>>), PersistentDescriptorSetSampler)>>>,
pub graphics_image_buffer: Option<Arc<ImmutableImage<Format>>>,
pub image_buffer: Vec<u8>,
pub img_buffers: Vec<Arc<CpuAccessibleBuffer<[u8]>>>,
pub settings_buffer: Option<Arc<CpuAccessibleBuffer<[u32]>>>,
@ -108,10 +114,11 @@ pub struct VkProcessor<'a> {
pub render_pass: Option<Arc<RenderPassAbstract + Send + Sync>>,
pub vertex_buffer: Option<Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync + 'static)>>,
pub dynamic_state: DynamicState,
pub previous_frame: Box<dyn GpuFuture>,
}
impl<'a> VkProcessor<'a> {
pub fn new(instance: &'a Arc<Instance>, surface: &'a Arc<Surface<Window>>) -> VkProcessor<'a> {
let physical = PhysicalDevice::enumerate(instance).next().unwrap();
@ -133,12 +140,14 @@ impl<'a> VkProcessor<'a> {
VkProcessor {
instance: instance.clone(),
physical: physical.clone(),
pipeline: Option::None,
graphics_pipeline: Option::None,
compute_pipeline: Option::None,
device: device.clone(),
queue: queue,
queues: queues,
set: Option::None,
compute_set: Option::None,
img_set: Option::None,
graphics_image_buffer: None,
image_buffer: Vec::new(),
img_buffers: Vec::new(),
settings_buffer: Option::None,
@ -148,7 +157,6 @@ impl<'a> VkProcessor<'a> {
render_pass: Option::None,
vertex_buffer: Option::None,
dynamic_state: DynamicState { line_width: None, viewports: None, scissors: None },
previous_frame: Box::new(sync::now(device.clone())) as Box<dyn GpuFuture>,
}
}
@ -316,6 +324,25 @@ impl<'a> VkProcessor<'a> {
self.render_pass = Some(render_pass);
let (texture, tex_future) = {
let image = image::load_from_memory_with_format(include_bytes!("../resources/images/funky-bird.jpg"),
ImageFormat::JPEG).unwrap().to_rgba();
let dimensions = image.dimensions();
let image_data = image.into_raw().clone();
ImmutableImage::from_iter(
image_data.iter().cloned(),
Dimensions::Dim2d { width: dimensions.0, height: dimensions.1 },
Format::R8G8B8A8Srgb,
self.queue.clone()
).unwrap()
};
let sampler = Sampler::new(self.device.clone(), Filter::Linear, Filter::Linear,
MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat,
SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap();
// Before we draw we have to create what is called a pipeline. This is similar to an OpenGL
// program, but much more specific.
let pipeline = GraphicsPipeline::start()
@ -323,6 +350,7 @@ impl<'a> VkProcessor<'a> {
// The type `SingleBufferDefinition` actually contains a template parameter corresponding
// to the type of each vertex. But in this code it is automatically inferred.
.vertex_input_single_buffer::<tVertex>()
// A Vulkan shader can in theory contain multiple entry points, so we have to specify
// which one. The `main` word of `main_entry_point` actually corresponds to the name of
// the entry point.
@ -332,7 +360,7 @@ impl<'a> VkProcessor<'a> {
floating_point: 0.0,
})
// The content of the vertex buffer describes a list of triangles.
.triangle_list()
.triangle_fan()
// Use a resizable viewport set to draw over the entire window
.viewports_dynamic_scissors_irrelevant(1)
// See `vertex_shader`.
@ -349,7 +377,13 @@ impl<'a> VkProcessor<'a> {
.unwrap();
self.pipeline = Option::Some(Arc::new(pipeline));
self.graphics_pipeline = Some(Arc::new(pipeline));
self.img_set = Some(Arc::new(PersistentDescriptorSet::start(self.graphics_pipeline.clone().unwrap().clone(), 0)
.add_sampled_image(texture.clone(), sampler.clone()).unwrap()
.build().unwrap()));
self.graphics_image_buffer = Some(texture.clone());
}
@ -432,12 +466,15 @@ impl<'a> VkProcessor<'a> {
.dispatch([self.xy.0, self.xy.1, 1],
self.compute_pipeline.clone().unwrap().clone(),
self.set.clone().unwrap().clone(), ()).unwrap()
self.compute_set.clone().unwrap().clone(), ()).unwrap()
// .copy_buffer_to_image(self.img_buffers.get(0).unwrap().clone(), self.graphics_image_buffer.clone().unwrap()).unwrap()
.begin_render_pass(framebuffers[image_num].clone(), false, clear_values)
.unwrap()
.draw(self.pipeline.clone().unwrap().clone(), &self.dynamic_state, v, (), ())
.draw(self.graphics_pipeline.clone().unwrap().clone(),
&self.dynamic_state, v,
self.img_set.clone().unwrap().clone(), ())
.unwrap()
.end_render_pass()
@ -539,7 +576,7 @@ impl<'a> VkProcessor<'a> {
.add_buffer(read_buffer.clone()).unwrap()
.add_buffer(settings_buffer.clone()).unwrap();
self.set = Some(Arc::new(set.build().unwrap()));
self.compute_set = Some(Arc::new(set.build().unwrap()));
self.img_buffers.push(write_buffer);
self.img_buffers.push(read_buffer);
@ -551,37 +588,16 @@ impl<'a> VkProcessor<'a> {
vulkano::impl_vertex!(tVertex, position);
CpuAccessibleBuffer::from_iter(self.device.clone(), BufferUsage::all(), [
tVertex { position: [-0.5, -0.25] },
tVertex { position: [0.0, 0.5] },
tVertex { position: [0.25, -0.1] }
tVertex { position: [-1.0, -1.0 ] },
tVertex { position: [-1.0, 1.0 ] },
tVertex { position: [ 1.0, 1.0 ] },
tVertex { position: [ 1.0, -1.0 ] },
].iter().cloned()).unwrap()
};
self.vertex_buffer = Some(vertex_buffer);
}
// pub fn run_kernel(&mut self) {
//
// println!("Running Kernel...");
//
// // The command buffer I think pretty much serves to define what runs where for how many times
// let command_buffer =
// AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(),self.queue.family()).unwrap()
// .dispatch([self.xy.0, self.xy.1, 1],
// self.compute_pipeline.clone().unwrap().clone(),
// self.set.clone().unwrap().clone(), ()).unwrap()
// .build().unwrap();
//
// // Create a future for running the command buffer and then just fence it
// let future = sync::now(self.device.clone())
// .then_execute(self.queue.clone(), command_buffer).unwrap()
// .then_signal_fence_and_flush().unwrap();
//
// // I think this is redundant and returns immediately
// future.wait(None).unwrap();
// println!("Done running kernel");
// }
// pub fn read_image(&self) -> Vec<u8> {
//
// // The buffer is sync'd so we can just read straight from the handle

@ -0,0 +1,292 @@
Skip to content
Search or jump to
Pull requests
Issues
Marketplace
Explore
@MitchellHansen
69
1,789 192 vulkano-rs/vulkano
Code Issues 171 Pull requests 15 Security Insights
vulkano/examples/src/bin/image/main.rs
@rukai rukai Fix warnings on nightly (#1213)
fc6ac6f 15 days ago
279 lines (232 sloc) 9.86 KB
// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.
use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer};
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
use vulkano::descriptor::descriptor_set::PersistentDescriptorSet;
use vulkano::device::{Device, DeviceExtensions};
use vulkano::format::Format;
use vulkano::framebuffer::{Framebuffer, FramebufferAbstract, Subpass, RenderPassAbstract};
use vulkano::image::{SwapchainImage, ImmutableImage, Dimensions};
use vulkano::instance::{Instance, PhysicalDevice};
use vulkano::pipeline::GraphicsPipeline;
use vulkano::pipeline::viewport::Viewport;
use vulkano::sampler::{Sampler, SamplerAddressMode, Filter, MipmapMode};
use vulkano::swapchain::{AcquireError, PresentMode, SurfaceTransform, Swapchain, SwapchainCreationError};
use vulkano::swapchain;
use vulkano::sync::{GpuFuture, FlushError};
use vulkano::sync;
use vulkano_win::VkSurfaceBuild;
use winit::{EventsLoop, Window, WindowBuilder, Event, WindowEvent};
use image::ImageFormat;
use std::sync::Arc;
fn main() {
// The start of this example is exactly the same as `triangle`. You should read the
// `triangle` example if you haven't done so yet.
let extensions = vulkano_win::required_extensions();
let instance = Instance::new(None, &extensions, None).unwrap();
let physical = PhysicalDevice::enumerate(&instance).next().unwrap();
println!("Using device: {} (type: {:?})", physical.name(), physical.ty());
let mut events_loop = EventsLoop::new();
let surface = WindowBuilder::new().build_vk_surface(&events_loop, instance.clone()).unwrap();
let window = surface.window();
let queue_family = physical.queue_families().find(|&q|
q.supports_graphics() && surface.is_supported(q).unwrap_or(false)
).unwrap();
let device_ext = DeviceExtensions { khr_swapchain: true, .. DeviceExtensions::none() };
let (device, mut queues) = Device::new(physical, physical.supported_features(), &device_ext,
[(queue_family, 0.5)].iter().cloned()).unwrap();
let queue = queues.next().unwrap();
let (mut swapchain, images) = {
let caps = surface.capabilities(physical).unwrap();
let usage = caps.supported_usage_flags;
let alpha = caps.supported_composite_alpha.iter().next().unwrap();
let format = caps.supported_formats[0].0;
let initial_dimensions = if let Some(dimensions) = window.get_inner_size() {
// convert to physical pixels
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
// The window no longer exists so exit the application.
return;
};
Swapchain::new(device.clone(), surface.clone(), caps.min_image_count, format,
initial_dimensions, 1, usage, &queue, SurfaceTransform::Identity, alpha,
PresentMode::Fifo, true, None).unwrap()
};
#[derive(Default, Debug, Clone)]
struct Vertex { position: [f32; 2] }
vulkano::impl_vertex!(Vertex, position);
let vertex_buffer = CpuAccessibleBuffer::<[Vertex]>::from_iter(
device.clone(),
BufferUsage::all(),
[
Vertex { position: [-0.5, -0.5 ] },
Vertex { position: [-0.5, 0.5 ] },
Vertex { position: [ 0.5, -0.5 ] },
Vertex { position: [ 0.5, 0.5 ] },
].iter().cloned()
).unwrap();
let vs = vs::Shader::load(device.clone()).unwrap();
let fs = fs::Shader::load(device.clone()).unwrap();
let render_pass = Arc::new(
vulkano::single_pass_renderpass!(device.clone(),
attachments: {
color: {
load: Clear,
store: Store,
format: swapchain.format(),
samples: 1,
}
},
pass: {
color: [color],
depth_stencil: {}
}
).unwrap()
);
let (texture, tex_future) = {
let image = image::load_from_memory_with_format(include_bytes!("image_img.png"),
ImageFormat::PNG).unwrap().to_rgba();
let image_data = image.into_raw().clone();
ImmutableImage::from_iter(
image_data.iter().cloned(),
Dimensions::Dim2d { width: 93, height: 93 },
Format::R8G8B8A8Srgb,
queue.clone()
).unwrap()
};
let sampler = Sampler::new(device.clone(), Filter::Linear, Filter::Linear,
MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat,
SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap();
let pipeline = Arc::new(GraphicsPipeline::start()
.vertex_input_single_buffer::<Vertex>()
.vertex_shader(vs.main_entry_point(), ())
.triangle_strip()
.viewports_dynamic_scissors_irrelevant(1)
.fragment_shader(fs.main_entry_point(), ())
.blend_alpha_blending()
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
.build(device.clone())
.unwrap());
let set = Arc::new(PersistentDescriptorSet::start(pipeline.clone(), 0)
.add_sampled_image(texture.clone(), sampler.clone()).unwrap()
.build().unwrap()
);
let mut dynamic_state = DynamicState { line_width: None, viewports: None, scissors: None };
let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut dynamic_state);
let mut recreate_swapchain = false;
let mut previous_frame_end = Box::new(tex_future) as Box<dyn GpuFuture>;
loop {
previous_frame_end.cleanup_finished();
if recreate_swapchain {
let dimensions = if let Some(dimensions) = window.get_inner_size() {
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
return;
};
let (new_swapchain, new_images) = match swapchain.recreate_with_dimension(dimensions) {
Ok(r) => r,
Err(SwapchainCreationError::UnsupportedDimensions) => continue,
Err(err) => panic!("{:?}", err)
};
swapchain = new_swapchain;
framebuffers = window_size_dependent_setup(&new_images, render_pass.clone(), &mut dynamic_state);
recreate_swapchain = false;
}
let (image_num, future) = match swapchain::acquire_next_image(swapchain.clone(), None) {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
recreate_swapchain = true;
continue;
}
Err(err) => panic!("{:?}", err)
};
let clear_values = vec!([0.0, 0.0, 1.0, 1.0].into());
let cb = AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family())
.unwrap()
.begin_render_pass(framebuffers[image_num].clone(), false, clear_values).unwrap()
.draw(pipeline.clone(), &dynamic_state, vertex_buffer.clone(), set.clone(), ()).unwrap()
.end_render_pass().unwrap()
.build().unwrap();
let future = previous_frame_end.join(future)
.then_execute(queue.clone(), cb).unwrap()
.then_swapchain_present(queue.clone(), swapchain.clone(), image_num)
.then_signal_fence_and_flush();
match future {
Ok(future) => {
previous_frame_end = Box::new(future) as Box<_>;
}
Err(FlushError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
}
Err(e) => {
println!("{:?}", e);
previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
}
}
let mut done = false;
events_loop.poll_events(|ev| {
match ev {
Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => done = true,
Event::WindowEvent { event: WindowEvent::Resized(_), .. } => recreate_swapchain = true,
_ => ()
}
});
if done { return; }
}
}
/// This method is called once during initialization, then again whenever the window is resized
fn window_size_dependent_setup(
images: &[Arc<SwapchainImage<Window>>],
render_pass: Arc<dyn RenderPassAbstract + Send + Sync>,
dynamic_state: &mut DynamicState
) -> Vec<Arc<dyn FramebufferAbstract + Send + Sync>> {
let dimensions = images[0].dimensions();
let viewport = Viewport {
origin: [0.0, 0.0],
dimensions: [dimensions[0] as f32, dimensions[1] as f32],
depth_range: 0.0 .. 1.0,
};
dynamic_state.viewports = Some(vec!(viewport));
images.iter().map(|image| {
Arc::new(
Framebuffer::start(render_pass.clone())
.add(image.clone()).unwrap()
.build().unwrap()
) as Arc<dyn FramebufferAbstract + Send + Sync>
}).collect::<Vec<_>>()
}
mod vs {
vulkano_shaders::shader!{
ty: "vertex",
src: "
#version 450
layout(location = 0) in vec2 position;
layout(location = 0) out vec2 tex_coords;
void main() {
gl_Position = vec4(position, 0.0, 1.0);
tex_coords = position + vec2(0.5);
}"
}
}
mod fs {
vulkano_shaders::shader!{
ty: "fragment",
src: "
#version 450
layout(location = 0) in vec2 tex_coords;
layout(location = 0) out vec4 f_color;
layout(set = 0, binding = 0) uniform sampler2D tex;
void main() {
f_color = texture(tex, tex_coords);
}"
}
}
Loading…
Cancel
Save