working on porting. Got some stuff cleaned up but I've broken the example I had running at one point

master
mitchellhansen 6 years ago
parent 86b4f7d9a3
commit a71958e815

@ -73,41 +73,14 @@ fn main() {
let mut processor = vkprocessor::VkProcessor::new(&instance, &surface); let mut processor = vkprocessor::VkProcessor::new(&instance, &surface);
processor.compile_kernel(String::from("simple-edge.compute")); processor.compile_kernel(String::from("simple-edge.compute"));
processor.load_buffers(String::from("funky-bird.jpg")); processor.compile_shaders(String::from("simple"), &surface);
processor.run_kernel();
processor.read_image();
processor.save_image();
let font = Font::from_file("resources/fonts/sansation.ttf").unwrap(); processor.load_buffers(String::from("funky-bird.jpg"));
let mut window = RenderWindow::new(
(900, 900),
"Custom drawable",
Style::CLOSE,
&Default::default(),
);
let mut timer = Timer::new(); let mut timer = Timer::new();
let mut input = Input::new(); let mut input = Input::new();
let xy = processor.xy;
let mut workpieceloader = WorkpieceLoader::new(String::from("resources/images/funky-bird.jpg"));
workpieceloader.load_first_stage(processor.read_image());
let mut texture = Texture::from_file("resources/images/funky-bird.jpg").expect("Couldn't load image");
let mut workpiece = Workpiece::new();
workpiece.render_sprite.set_texture(&mut texture, false);
let mut slider = Slider::new(Vector2f::new(40.0, 40.0), None, &font);
let mut selected_colors = Vec::new();
let mut button = button::Button::new(Vector2f::new(40.0,40.0), Vector2f::new(100.0,100.0), &font);
button.set_text("Text");
let step_size: f32 = 0.005; let step_size: f32 = 0.005;
let mut elapsed_time: f32; let mut elapsed_time: f32;
@ -117,54 +90,27 @@ fn main() {
let mut mouse_xy = Vector2i::new(0,0); let mut mouse_xy = Vector2i::new(0,0);
while window.is_open() { while let Some(p) = window.get_position() {
while let Some(event) = window.poll_event() { // Event::MouseButtonPressed { button, x, y} => {
match event { // let x = x as u32;
Event::Closed => return, // let y = y as u32;
Event::KeyPressed { code, .. } => { // mouse_xy = mouse::desktop_position();
if code == Key::Escape { // let r = processor.image_buffer[((processor.xy.0 * y + x) * 4 + 0) as usize] as u8;
return; // let g = processor.image_buffer[((processor.xy.0 * y + x) * 4 + 1) as usize] as u8;
} // let b = processor.image_buffer[((processor.xy.0 * y + x) * 4 + 2) as usize] as u8;
}, // let a = processor.image_buffer[((processor.xy.0 * y + x) * 4 + 3) as usize] as u8;
Event::MouseButtonPressed { button, x, y} => { //
let x = x as u32; // selected_colors.push(
let y = y as u32; // RectangleShape::with_size(Vector2f::new(30.0, 30.0))
mouse_xy = mouse::desktop_position(); // );
let r = processor.image_buffer[((processor.xy.0 * y + x) * 4 + 0) as usize] as u8; //
let g = processor.image_buffer[((processor.xy.0 * y + x) * 4 + 1) as usize] as u8; // let mut x_position = 45.0 * selected_colors.len() as f32;
let b = processor.image_buffer[((processor.xy.0 * y + x) * 4 + 2) as usize] as u8; //
let a = processor.image_buffer[((processor.xy.0 * y + x) * 4 + 3) as usize] as u8; // selected_colors.last_mut().unwrap().set_position(Vector2f::new(x_position, 80.0));
// selected_colors.last_mut().unwrap().set_fill_color(&Color::rgba(r,g,b,a));
selected_colors.push( // }
RectangleShape::with_size(Vector2f::new(30.0, 30.0))
);
let mut x_position = 45.0 * selected_colors.len() as f32;
selected_colors.last_mut().unwrap().set_position(Vector2f::new(x_position, 80.0));
selected_colors.last_mut().unwrap().set_fill_color(&Color::rgba(r,g,b,a));
},
Event::MouseWheelScrolled { wheel, delta, x, y } => {
if delta > 0.0 {
workpiece.render_sprite.set_scale(workpiece.render_sprite.get_scale()*Vector2f::new(1.1,1.1));
} else {
workpiece.render_sprite.set_scale(workpiece.render_sprite.get_scale()*Vector2f::new(0.9,0.9));
}
},
_ => {}
}
input.ingest(&event)
}
// Dragging by middle click
if input.is_mousebutton_held(Button::Middle) {
let delta = mouse_xy - mouse::desktop_position();
mouse_xy = mouse::desktop_position();
workpiece.render_sprite.set_position(
workpiece.render_sprite.position() - Vector2f::new(delta.x as f32, delta.y as f32)
);
}
elapsed_time = timer.elap_time(); elapsed_time = timer.elap_time();
delta_time = elapsed_time - current_time; delta_time = elapsed_time - current_time;
@ -178,18 +124,41 @@ fn main() {
accumulator_time -= step_size; accumulator_time -= step_size;
} }
window.clear(&Color::BLACK); processor.run_loop(&surface);
print!("adosfijqwe");
}
}
window.draw(&workpiece.render_sprite);
window.draw(&slider);
for i in &selected_colors {
window.draw(i);
}
window.draw(&button);
window.display();
}
}

@ -30,6 +30,7 @@ use vulkano::descriptor::PipelineLayoutAbstract;
use std::alloc::Layout; use std::alloc::Layout;
use vulkano::pipeline::viewport::Viewport; use vulkano::pipeline::viewport::Viewport;
#[derive(Default, Debug, Clone)] #[derive(Default, Debug, Clone)]
struct tVertex { position: [f32; 2] } struct tVertex { position: [f32; 2] }
@ -92,7 +93,7 @@ unsafe impl SpecializationConstants for MySpecConstants {
pub struct VkProcessor<'a> { pub struct VkProcessor<'a> {
pub instance: Arc<Instance>, pub instance: Arc<Instance>,
pub physical: PhysicalDevice<'a>, pub physical: PhysicalDevice<'a>,
pub pipeline: Option<Arc<GraphicsPipelineAbstract + Sync + Send>>, pub pipeline: Option<Arc<GraphicsPipelineAbstract + Sync + Send>>,
pub compute_pipeline: Option<std::sync::Arc<ComputePipeline<PipelineLayout<shade_runner::layouts::ComputeLayout>>>>, pub compute_pipeline: Option<std::sync::Arc<ComputePipeline<PipelineLayout<shade_runner::layouts::ComputeLayout>>>>,
pub device: Arc<Device>, pub device: Arc<Device>,
pub queues: QueuesIter, pub queues: QueuesIter,
@ -106,12 +107,11 @@ pub struct VkProcessor<'a> {
pub xy: (u32, u32), pub xy: (u32, u32),
pub render_pass: Option<Arc<RenderPassAbstract + Send + Sync>>, pub render_pass: Option<Arc<RenderPassAbstract + Send + Sync>>,
pub vertex_buffer: Option<Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync + 'static)>>, pub vertex_buffer: Option<Arc<(dyn BufferAccess + std::marker::Send + std::marker::Sync + 'static)>>,
pub dynamic_state: DynamicState,
} }
impl<'a> VkProcessor<'a> { impl<'a> VkProcessor<'a> {
pub fn new(instance : &'a Arc<Instance>, surface : &'a Arc<Surface<Window>>) -> VkProcessor<'a> { pub fn new(instance: &'a Arc<Instance>, surface: &'a Arc<Surface<Window>>) -> VkProcessor<'a> {
let physical = PhysicalDevice::enumerate(instance).next().unwrap(); let physical = PhysicalDevice::enumerate(instance).next().unwrap();
let queue_family = physical.queue_families().find(|&q| { let queue_family = physical.queue_families().find(|&q| {
@ -127,7 +127,6 @@ impl<'a> VkProcessor<'a> {
physical.supported_features(), physical.supported_features(),
&device_ext, &device_ext,
[(queue_family, 0.5)].iter().cloned()).unwrap(); [(queue_family, 0.5)].iter().cloned()).unwrap();
let queue = queues.next().unwrap(); let queue = queues.next().unwrap();
VkProcessor { VkProcessor {
@ -136,7 +135,7 @@ impl<'a> VkProcessor<'a> {
pipeline: Option::None, pipeline: Option::None,
compute_pipeline: Option::None, compute_pipeline: Option::None,
device: device, device: device,
queue: queues.next().unwrap(), queue: queue,
queues: queues, queues: queues,
set: Option::None, set: Option::None,
image_buffer: Vec::new(), image_buffer: Vec::new(),
@ -144,15 +143,14 @@ impl<'a> VkProcessor<'a> {
settings_buffer: Option::None, settings_buffer: Option::None,
swapchain: Option::None, swapchain: Option::None,
images: Option::None, images: Option::None,
xy: (0,0), xy: (0, 0),
render_pass: Option::None, render_pass: Option::None,
vertex_buffer: Option::None, vertex_buffer: Option::None,
dynamic_state: DynamicState { line_width: None, viewports: None, scissors: None },
} }
} }
pub fn compile_kernel(&mut self, filename: String) { pub fn compile_kernel(&mut self, filename: String) {
let project_root = let project_root =
std::env::current_dir() std::env::current_dir()
.expect("failed to get root directory"); .expect("failed to get root directory");
@ -192,35 +190,19 @@ impl<'a> VkProcessor<'a> {
self.compute_pipeline = Some(compute_pipeline); self.compute_pipeline = Some(compute_pipeline);
} }
pub fn compile_shaders(&mut self, filename: String, surface : &'a Arc<Surface<Window>>) { pub fn compile_shaders(&mut self, filename: String, surface: &'a Arc<Surface<Window>>) {
// Before we can draw on the surface, we have to create what is called a swapchain. Creating // Before we can draw on the surface, we have to create what is called a swapchain. Creating
// a swapchain allocates the color buffers that will contain the image that will ultimately // a swapchain allocates the color buffers that will contain the image that will ultimately
// be visible on the screen. These images are returned alongside with the swapchain. // be visible on the screen. These images are returned alongside with the swapchain.
let (mut swapchain, images) = { let (mut swapchain, images) = {
// Querying the capabilities of the surface. When we create the swapchain we can only
// pass values that are allowed by the capabilities.
let capabilities = surface.capabilities(self.physical).unwrap(); let capabilities = surface.capabilities(self.physical).unwrap();
let usage = capabilities.supported_usage_flags; let usage = capabilities.supported_usage_flags;
// The alpha mode indicates how the alpha value of the final image will behave. For example
// you can choose whether the window will be opaque or transparent.
let alpha = capabilities.supported_composite_alpha.iter().next().unwrap(); let alpha = capabilities.supported_composite_alpha.iter().next().unwrap();
// Choosing the internal format that the images will have. // Choosing the internal format that the images will have.
let format = capabilities.supported_formats[0].0; let format = capabilities.supported_formats[0].0;
// The dimensions of the window, only used to initially setup the swapchain. // Set the swapchains window dimensions
// NOTE:
// On some drivers the swapchain dimensions are specified by `caps.current_extent` and the
// swapchain size must use these dimensions.
// These dimensions are always the same as the window dimensions
//
// However other drivers dont specify a value i.e. `caps.current_extent` is `None`
// These drivers will allow anything but the only sensible value is the window dimensions.
//
// Because for both of these cases, the swapchain needs to be the window dimensions, we just use that.
let initial_dimensions = if let Some(dimensions) = surface.window().get_inner_size() { let initial_dimensions = if let Some(dimensions) = surface.window().get_inner_size() {
// convert to physical pixels // convert to physical pixels
let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into(); let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into();
@ -230,9 +212,16 @@ impl<'a> VkProcessor<'a> {
return; return;
}; };
// Please take a look at the docs for the meaning of the parameters we didn't mention. Swapchain::new(self.device.clone(),
Swapchain::new(self.device.clone(), surface.clone(), capabilities.min_image_count, format, surface.clone(),
initial_dimensions, 1, usage, &self.queue, SurfaceTransform::Identity, alpha, capabilities.min_image_count,
format,
initial_dimensions,
1, // Layers
usage,
&self.queue,
SurfaceTransform::Identity,
alpha,
PresentMode::Fifo, true, None).unwrap() PresentMode::Fifo, true, None).unwrap()
}; };
@ -248,13 +237,11 @@ impl<'a> VkProcessor<'a> {
let mut vertex_shader_path = project_root.clone(); let mut vertex_shader_path = project_root.clone();
vertex_shader_path.push(PathBuf::from("resources/shaders/")); vertex_shader_path.push(PathBuf::from("resources/shaders/"));
vertex_shader_path.push(PathBuf::from(filename.clone())); vertex_shader_path.push(PathBuf::from(filename.clone() + ".vertex"));
vertex_shader_path.push(PathBuf::from(".vertex"));
let mut fragment_shader_path = project_root.clone(); let mut fragment_shader_path = project_root.clone();
fragment_shader_path.push(PathBuf::from("resources/shaders/")); fragment_shader_path.push(PathBuf::from("resources/shaders/"));
fragment_shader_path.push(PathBuf::from(filename.clone())); fragment_shader_path.push(PathBuf::from(filename.clone() + ".fragment"));
fragment_shader_path.push(PathBuf::from(".fragment"));
let mut options = CompileOptions::new().ok_or(CompileError::CreateCompiler).unwrap(); let mut options = CompileOptions::new().ok_or(CompileError::CreateCompiler).unwrap();
options.add_macro_definition("SETTING_POS_X", Some("0")); options.add_macro_definition("SETTING_POS_X", Some("0"));
@ -270,7 +257,7 @@ impl<'a> VkProcessor<'a> {
sr::parse(&shader) sr::parse(&shader)
.expect("failed to parse"); .expect("failed to parse");
let x1 : Arc<ShaderModule> = unsafe { let x1: Arc<ShaderModule> = unsafe {
vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.fragment) vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.fragment)
}.unwrap(); }.unwrap();
@ -278,20 +265,20 @@ impl<'a> VkProcessor<'a> {
vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.vertex) vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.vertex)
}.unwrap(); }.unwrap();
let frag_entry_point : GraphicsEntryPoint<MySpecConstants, FragInput, FragOutput, FragLayout> = unsafe { let frag_entry_point: GraphicsEntryPoint<MySpecConstants, FragInput, FragOutput, FragLayout> = unsafe {
x1.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"), x1.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"),
vulkano_entry.frag_input, vulkano_entry.frag_input,
vulkano_entry.frag_output, vulkano_entry.frag_output,
vulkano_entry.frag_layout, vulkano_entry.frag_layout,
GraphicsShaderType::Fragment) GraphicsShaderType::Fragment)
}; };
let vert_entry_point: GraphicsEntryPoint<MySpecConstants, VertInput, VertOutput, VertLayout> = unsafe { let vert_entry_point: GraphicsEntryPoint<MySpecConstants, VertInput, VertOutput, VertLayout> = unsafe {
x2.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"), x2.graphics_entry_point(CStr::from_bytes_with_nul_unchecked(b"main\0"),
vulkano_entry.vert_input, vulkano_entry.vert_input,
vulkano_entry.vert_output, vulkano_entry.vert_output,
vulkano_entry.vert_layout, vulkano_entry.vert_layout,
GraphicsShaderType::Vertex) GraphicsShaderType::Vertex)
}; };
// The next step is to create a *render pass*, which is an object that describes where the // The next step is to create a *render pass*, which is an object that describes where the
@ -325,6 +312,7 @@ impl<'a> VkProcessor<'a> {
} }
).unwrap()); ).unwrap());
self.render_pass = Some(render_pass);
// Before we draw we have to create what is called a pipeline. This is similar to an OpenGL // Before we draw we have to create what is called a pipeline. This is similar to an OpenGL
// program, but much more specific. // program, but much more specific.
@ -339,7 +327,7 @@ impl<'a> VkProcessor<'a> {
.vertex_shader(vert_entry_point, MySpecConstants { .vertex_shader(vert_entry_point, MySpecConstants {
my_integer_constant: 0, my_integer_constant: 0,
a_boolean: 0, a_boolean: 0,
floating_point: 0.0 floating_point: 0.0,
}) })
// The content of the vertex buffer describes a list of triangles. // The content of the vertex buffer describes a list of triangles.
.triangle_list() .triangle_list()
@ -349,11 +337,11 @@ impl<'a> VkProcessor<'a> {
.fragment_shader(frag_entry_point, MySpecConstants { .fragment_shader(frag_entry_point, MySpecConstants {
my_integer_constant: 0, my_integer_constant: 0,
a_boolean: 0, a_boolean: 0,
floating_point: 0.0 floating_point: 0.0,
}) })
// We have to indicate which subpass of which render pass this pipeline is going to be used // We have to indicate which subpass of which render pass this pipeline is going to be used
// in. The pipeline will only be usable from this particular subpass. // in. The pipeline will only be usable from this particular subpass.
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap()) .render_pass(Subpass::from(self.render_pass.clone().unwrap().clone(), 0).unwrap())
// Now that our builder is filled, we call `build()` to obtain an actual pipeline. // Now that our builder is filled, we call `build()` to obtain an actual pipeline.
.build(self.device.clone()) .build(self.device.clone())
.unwrap(); .unwrap();
@ -363,78 +351,59 @@ impl<'a> VkProcessor<'a> {
} }
pub fn create_renderpass(&mut self) { // On resizes we have to recreate the swapchain
pub fn recreate_swapchain(&mut self, surface: &'a Arc<Surface<Window>>) {
let dimensions = if let Some(dimensions) = surface.window().get_inner_size() {
let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
return;
};
let (new_swapchain, new_images) = match self.swapchain.clone().unwrap().recreate_with_dimension(dimensions) {
Ok(r) => r,
// This error tends to happen when the user is manually resizing the window.
// Simply restarting the loop is the easiest way to fix this issue.
Err(SwapchainCreationError::UnsupportedDimensions) => panic!("Uh oh"),
Err(err) => panic!("{:?}", err)
};
self.swapchain = Some(new_swapchain);
self.images = Some(new_images);
} }
// Onto the actual vulkan loop
pub fn run_loop(&mut self, surface : &'a Arc<Surface<Window>>){ pub fn run_loop(&mut self, surface: &'a Arc<Surface<Window>>) {
// Dynamic viewports allow us to recreate just the viewport when the window is resized let mut framebuffers = window_size_dependent_setup(&self.images.clone().unwrap().clone(),
// Otherwise we would have to recreate the whole pipeline. self.render_pass.clone().unwrap().clone(),
let mut dynamic_state = DynamicState { line_width: None, viewports: None, scissors: None }; &mut self.dynamic_state);
// The render pass we created above only describes the layout of our framebuffers. Before we let mut recreate_swapchain = false;
// can draw we also need to create the actual framebuffers.
// // In the loop below we are going to submit commands to the GPU. Submitting a command produces
// Since we need to draw to multiple images, we are going to create a different framebuffer for // an object that implements the `GpuFuture` trait, which holds the resources for as long as
// each image. // they are in use by the GPU.
let mut framebuffers = window_size_dependent_setup(&self.images.clone().unwrap().clone(), self.render_pass.clone().unwrap().clone(), &mut dynamic_state); //
// Destroying the `GpuFuture` blocks until the GPU is finished executing it. In order to avoid
// Initialization is finally finished! // that, we store the submission of the previous frame here.
let mut previous_frame_end = Box::new(sync::now(self.device.clone())) as Box<dyn GpuFuture>;
// In some situations, the swapchain will become invalid by itself. This includes for example
// when the window is resized (as the images of the swapchain will no longer match the // loop {
// window's) or, on Android, when the application went to the background and goes back to the
// foreground.
//
// In this situation, acquiring a swapchain image or presenting it will return an error.
// Rendering to an image of that swapchain will not produce any error, but may or may not work.
// To continue rendering, we need to recreate the swapchain by creating a new swapchain.
// Here, we remember that we need to do this for the next loop iteration.
let mut recreate_swapchain = false;
// In the loop below we are going to submit commands to the GPU. Submitting a command produces
// an object that implements the `GpuFuture` trait, which holds the resources for as long as
// they are in use by the GPU.
//
// Destroying the `GpuFuture` blocks until the GPU is finished executing it. In order to avoid
// that, we store the submission of the previous frame here.
let mut previous_frame_end = Box::new(sync::now(self.device.clone())) as Box<dyn GpuFuture>;
loop {
// It is important to call this function from time to time, otherwise resources will keep // It is important to call this function from time to time, otherwise resources will keep
// accumulating and you will eventually reach an out of memory error. // accumulating and you will eventually reach an out of memory error.
// Calling this function polls various fences in order to determine what the GPU has // Calling this function polls various fences in order to determine what the GPU has
// already processed, and frees the resources that are no longer needed. // already processed, and frees the resources that are no longer needed.
// already processed, and frees the resources that are no longer needed.
previous_frame_end.cleanup_finished(); previous_frame_end.cleanup_finished();
// Whenever the window resizes we need to recreate everything dependent on the window size. // Whenever the window resizes we need to recreate everything dependent on the window size.
// In this example that includes the swapchain, the framebuffers and the dynamic state viewport. // In this example that includes the swapchain, the framebuffers and the dynamic state viewport.
if recreate_swapchain { if recreate_swapchain {
// Get the new dimensions of the window. self.recreate_swapchain(surface);
framebuffers = window_size_dependent_setup(&self.images.clone().unwrap().clone(),
let dimensions = if let Some(dimensions) = surface.window().get_inner_size() { self.render_pass.clone().unwrap().clone(),
let dimensions: (u32, u32) = dimensions.to_physical(surface.window().get_hidpi_factor()).into(); &mut self.dynamic_state);
[dimensions.0, dimensions.1]
} else {
return;
};
let (new_swapchain, new_images) = match self.swapchain.clone().unwrap().recreate_with_dimension(dimensions) {
Ok(r) => r,
// This error tends to happen when the user is manually resizing the window.
// Simply restarting the loop is the easiest way to fix this issue.
Err(SwapchainCreationError::UnsupportedDimensions) => continue,
Err(err) => panic!("{:?}", err)
};
self.swapchain = Some(new_swapchain);
// Because framebuffers contains an Arc on the old swapchain, we need to
// recreate framebuffers as well.
framebuffers = window_size_dependent_setup(&new_images, self.render_pass.clone().unwrap().clone(), &mut dynamic_state);
recreate_swapchain = false; recreate_swapchain = false;
} }
@ -449,7 +418,8 @@ impl<'a> VkProcessor<'a> {
Ok(r) => r, Ok(r) => r,
Err(AcquireError::OutOfDate) => { Err(AcquireError::OutOfDate) => {
recreate_swapchain = true; recreate_swapchain = true;
continue; //continue;
panic!("Weird thing");
} }
Err(err) => panic!("{:?}", err) Err(err) => panic!("{:?}", err)
}; };
@ -493,7 +463,7 @@ impl<'a> VkProcessor<'a> {
// //
// The last two parameters contain the list of resources to pass to the shaders. // The last two parameters contain the list of resources to pass to the shaders.
// Since we used an `EmptyPipeline` object, the objects have to be `()`. // Since we used an `EmptyPipeline` object, the objects have to be `()`.
.draw(self.pipeline.clone().unwrap().clone(), &dynamic_state, v, (), ()) .draw(self.pipeline.clone().unwrap().clone(), &self.dynamic_state, v, (), ())
.unwrap() .unwrap()
// We leave the render pass by calling `draw_end`. Note that if we had multiple // We leave the render pass by calling `draw_end`. Note that if we had multiple
@ -550,7 +520,7 @@ impl<'a> VkProcessor<'a> {
// } // }
// }); // });
if done { return; } if done { return; }
} //}
} }
pub fn load_buffers(&mut self, image_filename: String) pub fn load_buffers(&mut self, image_filename: String)
{ {
@ -620,9 +590,9 @@ impl<'a> VkProcessor<'a> {
// Create the data descriptor set for our previously created shader pipeline // Create the data descriptor set for our previously created shader pipeline
let mut set = let mut set =
PersistentDescriptorSet::start(self.compute_pipeline.clone().unwrap().clone(), 0) PersistentDescriptorSet::start(self.compute_pipeline.clone().unwrap().clone(), 0)
.add_buffer(write_buffer.clone()).unwrap() .add_buffer(write_buffer.clone()).unwrap()
.add_buffer(read_buffer.clone()).unwrap() .add_buffer(read_buffer.clone()).unwrap()
.add_buffer(settings_buffer.clone()).unwrap(); .add_buffer(settings_buffer.clone()).unwrap();
self.set = Some(Arc::new(set.build().unwrap())); self.set = Some(Arc::new(set.build().unwrap()));
@ -645,72 +615,72 @@ impl<'a> VkProcessor<'a> {
self.vertex_buffer = Some(vertex_buffer); self.vertex_buffer = Some(vertex_buffer);
} }
pub fn run_kernel(&mut self) { // pub fn run_kernel(&mut self) {
//
println!("Running Kernel..."); // println!("Running Kernel...");
//
// The command buffer I think pretty much serves to define what runs where for how many times // // The command buffer I think pretty much serves to define what runs where for how many times
let command_buffer = // let command_buffer =
AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(),self.queue.family()).unwrap() // AutoCommandBufferBuilder::primary_one_time_submit(self.device.clone(),self.queue.family()).unwrap()
.dispatch([self.xy.0, self.xy.1, 1], // .dispatch([self.xy.0, self.xy.1, 1],
self.compute_pipeline.clone().unwrap().clone(), // self.compute_pipeline.clone().unwrap().clone(),
self.set.clone().unwrap().clone(), ()).unwrap() // self.set.clone().unwrap().clone(), ()).unwrap()
.build().unwrap(); // .build().unwrap();
//
// Create a future for running the command buffer and then just fence it // // Create a future for running the command buffer and then just fence it
let future = sync::now(self.device.clone()) // let future = sync::now(self.device.clone())
.then_execute(self.queue.clone(), command_buffer).unwrap() // .then_execute(self.queue.clone(), command_buffer).unwrap()
.then_signal_fence_and_flush().unwrap(); // .then_signal_fence_and_flush().unwrap();
//
// I think this is redundant and returns immediately // // I think this is redundant and returns immediately
future.wait(None).unwrap(); // future.wait(None).unwrap();
println!("Done running kernel"); // println!("Done running kernel");
} // }
pub fn read_image(&self) -> Vec<u8> { // pub fn read_image(&self) -> Vec<u8> {
//
// The buffer is sync'd so we can just read straight from the handle // // The buffer is sync'd so we can just read straight from the handle
let mut data_buffer_content = self.img_buffers.get(0).unwrap().read().unwrap(); // let mut data_buffer_content = self.img_buffers.get(0).unwrap().read().unwrap();
//
println!("Reading output"); // println!("Reading output");
//
let mut image_buffer = Vec::new(); // let mut image_buffer = Vec::new();
//
for y in 0..self.xy.1 { // for y in 0..self.xy.1 {
for x in 0..self.xy.0 { // for x in 0..self.xy.0 {
//
let r = data_buffer_content[((self.xy.0 * y + x) * 4 + 0) as usize] as u8; // let r = data_buffer_content[((self.xy.0 * y + x) * 4 + 0) as usize] as u8;
let g = data_buffer_content[((self.xy.0 * y + x) * 4 + 1) as usize] as u8; // let g = data_buffer_content[((self.xy.0 * y + x) * 4 + 1) as usize] as u8;
let b = data_buffer_content[((self.xy.0 * y + x) * 4 + 2) as usize] as u8; // let b = data_buffer_content[((self.xy.0 * y + x) * 4 + 2) as usize] as u8;
let a = data_buffer_content[((self.xy.0 * y + x) * 4 + 3) as usize] as u8; // let a = data_buffer_content[((self.xy.0 * y + x) * 4 + 3) as usize] as u8;
//
image_buffer.push(r); // image_buffer.push(r);
image_buffer.push(g); // image_buffer.push(g);
image_buffer.push(b); // image_buffer.push(b);
image_buffer.push(a); // image_buffer.push(a);
} // }
} // }
//
image_buffer // image_buffer
} // }
pub fn save_image(&self) { // pub fn save_image(&self) {
println!("Saving output"); // println!("Saving output");
//
let img_data = self.read_image(); // let img_data = self.read_image();
//
let img = ImageBuffer::from_fn(self.xy.0, self.xy.1, |x, y| { // let img = ImageBuffer::from_fn(self.xy.0, self.xy.1, |x, y| {
//
let r = img_data[((self.xy.0 * y + x) * 4 + 0) as usize] as u8; // let r = img_data[((self.xy.0 * y + x) * 4 + 0) as usize] as u8;
let g = img_data[((self.xy.0 * y + x) * 4 + 1) as usize] as u8; // let g = img_data[((self.xy.0 * y + x) * 4 + 1) as usize] as u8;
let b = img_data[((self.xy.0 * y + x) * 4 + 2) as usize] as u8; // let b = img_data[((self.xy.0 * y + x) * 4 + 2) as usize] as u8;
let a = img_data[((self.xy.0 * y + x) * 4 + 3) as usize] as u8; // let a = img_data[((self.xy.0 * y + x) * 4 + 3) as usize] as u8;
//
image::Rgba([r, g, b, a]) // image::Rgba([r, g, b, a])
}); // });
//
img.save(format!("output/{}.png", SystemTime::now().duration_since(SystemTime::UNIX_EPOCH).unwrap().as_secs())); // img.save(format!("output/{}.png", SystemTime::now().duration_since(SystemTime::UNIX_EPOCH).unwrap().as_secs()));
} // }
} }

Loading…
Cancel
Save