separating out vulkan stuff

master
mitchellhansen 6 years ago
parent b2b486be84
commit f903b741e0

@ -66,14 +66,8 @@ void main() {
p = current_best_p; p = current_best_p;
write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x000000FF) ) | (p.x); write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x000000FF) ) | (p.x);
write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x0000FF00) ) | (p.y << 8); write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x0000FF00) ) | (p.y << 8);
write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x00FF0000) ) | (p.z << 16); write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0x00FF0000) ) | (p.z << 16);
write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0xFF000000) ) | (p.w << 24); write_buffer.buf[idx] = (write_buffer.buf[idx] & (~0xFF000000) ) | (p.w << 24);
// read_buffer.buf[idx] = (read_buffer.buf[idx] & (~0x000000FF) ) | (p.x);
// read_buffer.buf[idx] = (read_buffer.buf[idx] & (~0x0000FF00) ) | (p.y << 8);
// read_buffer.buf[idx] = (read_buffer.buf[idx] & (~0x00FF0000) ) | (p.z << 16);
// read_buffer.buf[idx] = (read_buffer.buf[idx] & (~0xFF000000) ) | (p.w << 24);
} }

@ -19,6 +19,7 @@ use sfml::system::*;
use sfml::system::Vector2 as sfVec2; use sfml::system::Vector2 as sfVec2;
use sfml::window::*; use sfml::window::*;
use sfml::window::{Event, Key, Style}; use sfml::window::{Event, Key, Style};
use sfml::window::mouse::Button;
use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, DeviceLocalBuffer, ImmutableBuffer, BufferAccess}; use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, DeviceLocalBuffer, ImmutableBuffer, BufferAccess};
use vulkano::command_buffer::AutoCommandBufferBuilder; use vulkano::command_buffer::AutoCommandBufferBuilder;
@ -46,142 +47,12 @@ mod slider;
mod timer; mod timer;
mod input; mod input;
mod util; mod util;
mod vkprocessor;
fn main() { fn main() {
// Load up the input image, determine some details let processor = vkprocessor::VkProcessor::new();
let mut img = image::open("resources/images/funky-bird.jpg").unwrap();
let xy = img.dimensions();
let data_length = xy.0 * xy.1 * 4;
let mut image_buffer = Vec::new();
{
// Create the vulkan instance, device, and device queue
let instance = Instance::new(None, &InstanceExtensions::none(), None).unwrap();
let physical = PhysicalDevice::enumerate(&instance).next().unwrap();
let queue_family = physical.queue_families().find(|&q| q.supports_compute()).unwrap();
let (device, mut queues) = Device::new(physical,
physical.supported_features(),
&DeviceExtensions::none(),
[(queue_family, 0.5)].iter().cloned()).unwrap();
let queue = queues.next().unwrap();
println!("Device initialized");
let project_root = std::env::current_dir().expect("failed to get root directory");
let mut compute_path = project_root.clone();
compute_path.push(PathBuf::from("resources/shaders/simple-homogenize.compute"));
let shader = sr::load_compute(compute_path).expect("Failed to compile");
let vulkano_entry = sr::parse_compute(&shader).expect("failed to parse");
let x = unsafe {
vulkano::pipeline::shader::ShaderModule::from_words(device.clone(), &shader.compute)
}.unwrap();
// Compile the shader and add it to a pipeline
let pipeline = Arc::new({
unsafe {
ComputePipeline::new(device.clone(), &x.compute_entry_point(
CStr::from_bytes_with_nul_unchecked(b"main\0"),
vulkano_entry.compute_layout), &()
).unwrap()
}
});
let pixel_count = img.raw_pixels().len();
println!("Pixel count {}", pixel_count);
if pixel_count != data_length as usize {
for i in img.raw_pixels().iter() {
if (image_buffer.len() + 1) % 4 == 0 {
image_buffer.push(255);
}
image_buffer.push(*i);
}
image_buffer.push(255);
} else {
image_buffer = img.raw_pixels();
}
println!("Buffer length {}", image_buffer.len());
println!("Size {:?}", xy);
println!("Allocating Buffers...");
{
// Pull out the image data and place it in a buffer for the kernel to write to and for us to read from
let write_buffer = {
let mut buff = image_buffer.iter();
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap()
};
// Pull out the image data and place it in a buffer for the kernel to read from
let read_buffer = {
let mut buff = image_buffer.iter();
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap()
};
// A buffer to hold many i32 values to use as settings
let settings_buffer = {
let vec = vec![xy.0, xy.1];
let mut buff = vec.iter();
let data_iter = (0..2).map(|n| *(buff.next().unwrap()));
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap()
};
println!("Done");
// Create the data descriptor set for our previously created shader pipeline
let mut set = PersistentDescriptorSet::start(pipeline.clone(), 0)
.add_buffer(write_buffer.clone()).unwrap()
.add_buffer(read_buffer.clone()).unwrap()
.add_buffer(settings_buffer.clone()).unwrap();
let mut set = Arc::new(set.build().unwrap());
println!("Running Kernel...");
// The command buffer I think pretty much serves to define what runs where for how many times
let command_buffer = AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family()).unwrap()
.dispatch([xy.0, xy.1, 1], pipeline.clone(), set.clone(), ()).unwrap()
.build().unwrap();
// Create a future for running the command buffer and then just fence it
let future = sync::now(device.clone())
.then_execute(queue.clone(), command_buffer).unwrap()
.then_signal_fence_and_flush().unwrap();
// I think this is redundant and returns immediately
future.wait(None).unwrap();
println!("Done running kernel");
// The buffer is sync'd so we can just read straight from the handle
let mut data_buffer_content = write_buffer.read().unwrap();
println!("Reading output");
for y in 0..xy.1 {
for x in 0..xy.0 {
let r = data_buffer_content[((xy.0 * y + x) * 4 + 0) as usize] as u8;
let g = data_buffer_content[((xy.0 * y + x) * 4 + 1) as usize] as u8;
let b = data_buffer_content[((xy.0 * y + x) * 4 + 2) as usize] as u8;
let a = data_buffer_content[((xy.0 * y + x) * 4 + 3) as usize] as u8;
*image_buffer.get_mut(((xy.0 * y + x) * 4 + 0) as usize).unwrap() = r;
*image_buffer.get_mut(((xy.0 * y + x) * 4 + 1) as usize).unwrap() = g;
*image_buffer.get_mut(((xy.0 * y + x) * 4 + 2) as usize).unwrap() = b;
*image_buffer.get_mut(((xy.0 * y + x) * 4 + 3) as usize).unwrap() = a;
img.put_pixel(x, y, image::Rgba([r, g, b, a]))
}
}
}
// Currently bringing all this start shit outta scope to see if it stops my gpu from screaming
println!("Saving output");
img.save(format!("output/{}.png", SystemTime::now().duration_since(SystemTime::UNIX_EPOCH).unwrap().as_secs()));
}
let mut window = RenderWindow::new( let mut window = RenderWindow::new(
(900, 900), (900, 900),
@ -203,14 +74,18 @@ fn main() {
let mut slider = Slider::new(40.0, None); let mut slider = Slider::new(40.0, None);
let step_size: f32 = 0.005;
let mut elapsed_time: f32; let mut selected_colors = Vec::new();
let mut delta_time: f32; selected_colors.push(RectangleShape::with_size(Vector2f::new(30.0, 30.0)));
let step_size: f32 = 0.005;
let mut elapsed_time: f32;
let mut delta_time: f32;
let mut accumulator_time: f32 = 0.0; let mut accumulator_time: f32 = 0.0;
let mut current_time: f32 = timer.elap_time(); let mut current_time: f32 = timer.elap_time();
while window.is_open() { while window.is_open() {
while let Some(event) = window.poll_event() { while let Some(event) = window.poll_event() {
match event { match event {
Event::Closed => return, Event::Closed => return,
@ -219,19 +94,20 @@ fn main() {
return; return;
} }
} }
Event::MouseButtonPressed { button, x, y } => {
if button == Button::Left {
return;
}
}
_ => {} _ => {}
} }
input.ingest(&event) input.ingest(&event)
} }
if input.is_held(Key::W) { if input.is_held(Key::W) {}
} if input.is_held(Key::A) {}
if input.is_held(Key::A) { if input.is_held(Key::S) {}
} if input.is_held(Key::D) {}
if input.is_held(Key::S) {
}
if input.is_held(Key::D) {
}
elapsed_time = timer.elap_time(); elapsed_time = timer.elap_time();
delta_time = elapsed_time - current_time; delta_time = elapsed_time - current_time;
@ -248,10 +124,14 @@ fn main() {
window.clear(&Color::BLACK); window.clear(&Color::BLACK);
window.draw(&background_sprite); window.draw(&background_sprite);
// for i in selected_colors {
//
// }
window.draw(&slider); window.draw(&slider);
window.display(); window.display();
} }
} }

@ -0,0 +1,213 @@
use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer, DeviceLocalBuffer, ImmutableBuffer, BufferAccess};
use vulkano::command_buffer::AutoCommandBufferBuilder;
use vulkano::descriptor::descriptor_set::PersistentDescriptorSet;
use vulkano::device::{Device, DeviceExtensions, QueuesIter, Queue};
use vulkano::instance::{Instance, InstanceExtensions, PhysicalDevice, QueueFamily};
use vulkano::pipeline::ComputePipeline;
use vulkano::sync::GpuFuture;
use vulkano::sync;
use std::time::SystemTime;
use std::sync::Arc;
use std::ffi::CStr;
use std::path::PathBuf;
use shade_runner as sr;
use image::DynamicImage;
pub struct VkProcessor<'a> {
instance: Arc<Instance>,
physical: PhysicalDevice<'a>,
queue_family: QueueFamily<'a>,
device: Arc<Device>,
queues: QueuesIter,
queue: Arc<Queue>,
img: Option<DynamicImage>,
image_buffer: Vec<u8>,
buffers: Vec::
}
impl VkProcessor {
pub fn new() -> VkProcessor {
let instance = Instance::new(None, &InstanceExtensions::none(), None).unwrap();
let physical = PhysicalDevice::enumerate(&instance).next().unwrap();
let queue_family = physical.queue_families().find(|&q| q.supports_compute()).unwrap();
let (device, mut queues) = Device::new(physical,
physical.supported_features(),
&DeviceExtensions::none(),
[(queue_family, 0.5)].iter().cloned()).unwrap();
VkProcessor {
instance: instance,
physical: physical,
queue_family: queue_family,
device: device,
queues: queues,
queue: queues.next().unwrap(),
img: Option::None,
image_buffer: Vec::new(),
buffers: Vec::new(),
}
}
pub fn compile_kernel(&mut self) {
let project_root = std::env::current_dir().expect("failed to get root directory");
let mut compute_path = project_root.clone();
compute_path.push(PathBuf::from("resources/shaders/simple-homogenize.compute"));
let shader = sr::load_compute(compute_path).expect("Failed to compile");
let vulkano_entry = sr::parse_compute(&shader).expect("failed to parse");
let x = unsafe {
vulkano::pipeline::shader::ShaderModule::from_words(self.device.clone(), &shader.compute)
}.unwrap();
// Compile the shader and add it to a pipeline
let pipeline = Arc::new({
unsafe {
ComputePipeline::new(self.device.clone(), &x.compute_entry_point(
CStr::from_bytes_with_nul_unchecked(b"main\0"),
vulkano_entry.compute_layout), &(),
).unwrap()
}
});
}
pub fn load_buffers(&mut self) {
self.img = Option::Some(image::open("resources/images/funky-bird.jpg").unwrap());
let xy = self.img.dimensions();
let data_length = xy.0 * xy.1 * 4;
let pixel_count = self.img.raw_pixels().len();
println!("Pixel count {}", pixel_count);
if pixel_count != data_length as usize {
println!("Creating apha channel...");
for i in self.img.raw_pixels().iter() {
if (self.image_buffer.len() + 1) % 4 == 0 {
self.image_buffer.push(255);
}
self.image_buffer.push(*i);
}
self.image_buffer.push(255);
} else {
self.image_buffer = self.img.raw_pixels();
}
println!("Buffer length {}", self.image_buffer.len());
println!("Size {:?}", xy);
println!("Allocating Buffers...");
{
// Pull out the image data and place it in a buffer for the kernel to write to and for us to read from
let write_buffer = {
let mut buff = image_buffer.iter();
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap()
};
// Pull out the image data and place it in a buffer for the kernel to read from
let read_buffer = {
let mut buff = image_buffer.iter();
let data_iter = (0..data_length).map(|n| *(buff.next().unwrap()));
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap()
};
// A buffer to hold many i32 values to use as settings
let settings_buffer = {
let vec = vec![xy.0, xy.1];
let mut buff = vec.iter();
let data_iter = (0..2).map(|n| *(buff.next().unwrap()));
CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), data_iter).unwrap()
};
}
println!("Done");
// Create the data descriptor set for our previously created shader pipeline
let mut set = PersistentDescriptorSet::start(pipeline.clone(), 0)
.add_buffer(write_buffer.clone()).unwrap()
.add_buffer(read_buffer.clone()).unwrap()
.add_buffer(settings_buffer.clone()).unwrap();
let mut set = Arc::new(set.build().unwrap());
}
pub fn run_kernel(&mut self) {
println!("Running Kernel...");
// The command buffer I think pretty much serves to define what runs where for how many times
let command_buffer = AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family()).unwrap()
.dispatch([xy.0, xy.1, 1], pipeline.clone(), set.clone(), ()).unwrap()
.build().unwrap();
// Create a future for running the command buffer and then just fence it
let future = sync::now(device.clone())
.then_execute(queue.clone(), command_buffer).unwrap()
.then_signal_fence_and_flush().unwrap();
// I think this is redundant and returns immediately
future.wait(None).unwrap();
println!("Done running kernel");
}
pub fn read_image() -> Vec<u8> {
// The buffer is sync'd so we can just read straight from the handle
let mut data_buffer_content = write_buffer.read().unwrap();
println!("Reading output");
let mut image_buffer = Vec::new();
for y in 0..xy.1 {
for x in 0..xy.0 {
let r = data_buffer_content[((xy.0 * y + x) * 4 + 0) as usize] as u8;
let g = data_buffer_content[((xy.0 * y + x) * 4 + 1) as usize] as u8;
let b = data_buffer_content[((xy.0 * y + x) * 4 + 2) as usize] as u8;
let a = data_buffer_content[((xy.0 * y + x) * 4 + 3) as usize] as u8;
image_buffer.push(r);
image_buffer.push(g);
image_buffer.push(b);
image_buffer.push(a);
img.put_pixel(x, y, image::Rgba([r, g, b, a]))
}
}
image_buffer
}
pub fn save_image(&self) {
println!("Saving output");
img.save(format!("output/{}.png", SystemTime::now().duration_since(SystemTime::UNIX_EPOCH).unwrap().as_secs()));
}
}
Loading…
Cancel
Save