Trying to find a way to make this as simd friendly as possible. Perhaps a kernel for calucation and then a kernel to "clean" the back buffer

master
MitchellHansen 9 years ago
parent c5d73bd5fd
commit 6334e9c848

@ -28,7 +28,7 @@ float elap_time() {
return (float)((counter - start) / double(frequency));
}
/* convert the kernel file into a string */
// convert the kernel file into a string
int convertToString(const char *filename, std::string& s)
{
size_t size;
@ -63,8 +63,8 @@ int main(int argc, char* argv[])
{
int WINDOW_X = 1000;
int WINDOW_Y = 1000;
int GRID_WIDTH = 1000;
int GRID_HEIGHT = 1000;
int GRID_WIDTH = WINDOW_X;
int GRID_HEIGHT = WINDOW_Y;
int WORKER_SIZE = 2000;
// ============================== OpenCL Setup ==================================================================
@ -139,18 +139,19 @@ int main(int argc, char* argv[])
}
// Now create the kernel
cl_kernel kernel = clCreateKernel(program, "conway", NULL);
cl_kernel front_kernel = clCreateKernel(program, "conway", NULL);
cl_kernel back_kernel = clCreateKernel(program, "conway", NULL);
// ======================================= Setup grid =========================================================
// Setup the rng
std::mt19937 rng(time(NULL));
std::uniform_int_distribution<int> rgen(0, 12); // 25% chance
std::uniform_int_distribution<int> rgen(0, 4); // 25% chance
// Init the grids
unsigned char* front_grid = new unsigned char[GRID_WIDTH * GRID_HEIGHT* 2];
unsigned char* front_grid = new unsigned char[GRID_WIDTH * GRID_HEIGHT];
for (int i = 0; i < 1000 * 1000; i += 2) {
for (int i = 0; i < GRID_WIDTH * GRID_HEIGHT; i++) {
if (rgen(rng) == 1) {
front_grid[i] = 1;
}
@ -159,31 +160,14 @@ int main(int argc, char* argv[])
}
}
unsigned char* rear_grid = new unsigned char[GRID_WIDTH * GRID_HEIGHT * 2];
unsigned char* back_grid = new unsigned char[GRID_WIDTH * GRID_HEIGHT];
for (int i = 0; i < GRID_WIDTH * GRID_HEIGHT; i++) {
rear_grid[i] = front_grid[i];
back_grid[i] = front_grid[i];
}
// ====================================== Setup SFML ==========================================================
sf::Uint8* asdf = rear_grid;
sf::Uint8* pixel_array = new sf::Uint8[WINDOW_X * WINDOW_Y * 4];
for (int i = 0; i < GRID_WIDTH * GRID_HEIGHT * 2; i += 2) {
int p = i / 2;
pixel_array[p * 4] = 49; // R?
pixel_array[p * 4 + 1] = 68; // G?
pixel_array[p * 4 + 2] = 72; // B?
pixel_array[p * 4 + 3] = 255; // A?
}
char* arr = new char[1000 * 1000];
// Init window, and loop data
sf::RenderWindow window(sf::VideoMode(GRID_WIDTH, GRID_HEIGHT), "Classic Games");
@ -191,26 +175,51 @@ int main(int argc, char* argv[])
double frame_time = 0.0, elapsed_time = 0.0, delta_time = 0.0, accumulator_time = 0.0, current_time = 0.0;
int frame_count = 0;
sf::Uint8* pixel_array = new sf::Uint8[WINDOW_X * WINDOW_Y * 4];
for (int i = 0; i < GRID_WIDTH * GRID_HEIGHT; i++) {
pixel_array[i * 4] = 49; // R?
pixel_array[i * 4 + 1] = 68; // G?
pixel_array[i * 4 + 2] = 72; // B?
pixel_array[i * 4 + 3] = 255; // A?
}
sf::Texture texture;
texture.create(WINDOW_X, WINDOW_Y);
sf::Sprite sprite(texture);
// ========================================= Setup the buffers ==================================================
int err = 0;
cl_mem frontBuffer = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, GRID_WIDTH * GRID_HEIGHT * sizeof(char), (void*)front_grid, &err);
cl_mem rearBuffer = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, GRID_WIDTH * GRID_HEIGHT * sizeof(char), (void*)rear_grid, &err);
cl_mem backBuffer = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, GRID_WIDTH * GRID_HEIGHT * sizeof(char), (void*)back_grid, &err);
cl_mem pixelBuffer = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, GRID_WIDTH * GRID_HEIGHT * sizeof(char), (void*)pixel_array, &err);
cl_mem workerCountBuffer = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(int), &WORKER_SIZE, &err);
cl_mem gridWidthBuffer = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(int), &GRID_WIDTH, &err);
cl_mem gridHeightBuffer = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(int), &GRID_HEIGHT, &err);
status = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&frontBuffer);
status = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&workerCountBuffer);
status = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&gridWidthBuffer);
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), (void *)&gridHeightBuffer);
// Kernel args for front kernel
status = clSetKernelArg(front_kernel, 0, sizeof(cl_mem), (void *)&frontBuffer);
status = clSetKernelArg(front_kernel, 1, sizeof(cl_mem), (void *)&backBuffer);
status = clSetKernelArg(front_kernel, 2, sizeof(cl_mem), (void *)&pixelBuffer);
status = clSetKernelArg(front_kernel, 3, sizeof(cl_mem), (void *)&workerCountBuffer);
status = clSetKernelArg(front_kernel, 4, sizeof(cl_mem), (void *)&gridWidthBuffer);
status = clSetKernelArg(front_kernel, 5, sizeof(cl_mem), (void *)&gridHeightBuffer);
sf::Texture texture;
texture.create(WINDOW_X, WINDOW_Y);
sf::Sprite sprite(texture);
// Flipped kernel args for the back kernel
status = clSetKernelArg(back_kernel, 0, sizeof(cl_mem), (void *)&backBuffer); // Flipped
status = clSetKernelArg(back_kernel, 1, sizeof(cl_mem), (void *)&frontBuffer); // Flipped
status = clSetKernelArg(back_kernel, 2, sizeof(cl_mem), (void *)&pixelBuffer);
status = clSetKernelArg(back_kernel, 3, sizeof(cl_mem), (void *)&workerCountBuffer);
status = clSetKernelArg(back_kernel, 4, sizeof(cl_mem), (void *)&gridWidthBuffer);
status = clSetKernelArg(back_kernel, 5, sizeof(cl_mem), (void *)&gridHeightBuffer);
bool flipped = false;
// ===================================== Loop ==================================================================
while (window.isOpen()) {
@ -241,12 +250,16 @@ int main(int argc, char* argv[])
// Work size, for each y line
size_t global_work_size[1] = { WORKER_SIZE };
// Run the kernel
status = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, global_work_size, NULL, 0, NULL, NULL);
// Get output, put back into grid
status = clEnqueueReadBuffer(commandQueue, frontBuffer, CL_TRUE, 0, GRID_WIDTH * GRID_HEIGHT * sizeof(char), (void*)rear_grid, 0, NULL, NULL);
if (flipped) {
status = clEnqueueNDRangeKernel(commandQueue, back_kernel, 1, NULL, global_work_size, NULL, 0, NULL, NULL);
status = clEnqueueReadBuffer(commandQueue, pixelBuffer, CL_TRUE, 0, GRID_WIDTH * GRID_HEIGHT * 4 * sizeof(unsigned char), (void*)pixel_array, 0, NULL, NULL);
}
else {
status = clEnqueueNDRangeKernel(commandQueue, front_kernel, 1, NULL, global_work_size, NULL, 0, NULL, NULL);
status = clEnqueueReadBuffer(commandQueue, pixelBuffer, CL_TRUE, 0, GRID_WIDTH * GRID_HEIGHT * 4 * sizeof(unsigned char), (void*)pixel_array, 0, NULL, NULL);
}
flipped = !flipped;
texture.update(pixel_array);
window.draw(sprite);
@ -257,21 +270,24 @@ int main(int argc, char* argv[])
}
// Temporary
// Release the buffers
status = clReleaseMemObject(frontBuffer);
status = clReleaseMemObject(backBuffer);
status = clReleaseMemObject(pixelBuffer);
status = clReleaseMemObject(workerCountBuffer);
status = clReleaseMemObject(gridWidthBuffer);
status = clReleaseMemObject(gridHeightBuffer);
/*Step 12: Clean the resources.*/
status = clReleaseKernel(kernel); //Release kernel.
// And the program stuff
status = clReleaseKernel(front_kernel); //Release kernel.
status = clReleaseProgram(program); //Release the program object.
status = clReleaseCommandQueue(commandQueue); //Release Command queue.
status = clReleaseContext(context); //Release context.
if (devices != NULL)
{
free(devices);
delete devices;
devices = NULL;
}

@ -227,7 +227,8 @@
<ClCompile Include="Conway.cpp" />
</ItemGroup>
<ItemGroup>
<None Include="conway_kernel.cl" />
<None Include="conway_compute.cl" />
<None Include="conway_align.cl" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">

@ -0,0 +1,7 @@
__kernel void conway(__global unsigned char* front_grid, __global unsigned char* rear_grid, __global unsigned char* pixel_out, __global int* num_workers, __global int* grid_width, __global int* grid_height){
}

@ -0,0 +1,61 @@
__kernel void conway(__global unsigned char* front_grid, __global unsigned char* rear_grid, __global unsigned char* pixel_out, __global int* num_workers, __global int* grid_width, __global int* grid_height)
{
// Caclulate the start and end range that this worker will be calculating
int data_length = *grid_width * *grid_height;
int start_range = (data_length / *num_workers) * get_global_id(0);
int end_range = (data_length / *num_workers) * (get_global_id(0) + 1);
// x, y + 1
int neighbors = 0;
for (int i = start_range; i < end_range; i++){
// add all 8 blocks to neighbors
neighbors = 0;
// Top
neighbors += front_grid[i - *grid_width];
// Top right
neighbors += front_grid[i - *grid_width + 1];
// Right
neighbors += front_grid[i + 1];
// Bottom Right
neighbors += front_grid[i + *grid_width + 1];
// Bottom
neighbors += front_grid[i + *grid_width];
// Bottom Left
neighbors += front_grid[i + *grid_width - 1];
// Left
neighbors += front_grid[i - 1];
// Top left
neighbors += front_grid[i - *grid_width - 1];
if (neighbors == 3 || (neighbors == 2 && front_grid[i])) {
rear_grid[i] = 1;
pixel_out[i * 4] = 255; // R
pixel_out[i * 4 + 1] = 255; // G
pixel_out[i * 4 + 2] = 255; // B
pixel_out[i * 4 + 3] = 255; // A
}
else {
rear_grid[i] = 0;
pixel_out[i * 4] = 49; // R
pixel_out[i * 4 + 1] = 68; // G
pixel_out[i * 4 + 2] = 72; // B
pixel_out[i * 4 + 3] = 255; // A
}
}
}

@ -1,51 +0,0 @@
__kernel void conway(__global unsigned char* front_grid, __global unsigned char* rear_grid, __global int* num_workers, __global int* grid_width, __global int* grid_height)
{
// Caclulate the start and end range that this worker will be calculating
int data_length = *grid_width * *grid_height;
int start_range = (data_length / *num_workers) * get_global_id(0) * 2; // * 2 = padding
int end_range = (data_length / *num_workers) * (get_global_id(0) + 1) * 2;
// x, y + 1
int neighbors = 0;
for (int i = start_range; i < end_range; i += 2){
// add all 8 blocks to neghbors
neighbors = 0;
// Top
neighbors += in[i - *grid_width * 2];
// Top right
neighbors += in[i - *grid_width * 2 + 2];
// Right
neighbors += in[i + 2];
// Bottom Right
neighbors += in[i + *grid_width * 2 + 2];
// Bottom
neighbors += in[i + *grid_width * 2];
// Bottom Left
neighbors += in[i + *grid_width * 2 - 2];
// Left
neighbors += in[i - 2];
// Top left
neighbors += in[i - *grid_width * 2 - 2];
// push living status to the padded second char
if (neighbors == 3 || (neighbors == 2 && in[i])){
in[i + 1] = 1;
}
else
in[i + 1] = 0;
}
}

@ -227,7 +227,8 @@
<ClCompile Include="Conway.cpp" />
</ItemGroup>
<ItemGroup>
<None Include="conway_kernel.cl" />
<None Include="conway_compute.cl" />
<None Include="conway_align.cl" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">

Loading…
Cancel
Save