Converting over to run using OpenCL

master
MitchellHansen 8 years ago
parent 964b70879f
commit 36f72f5cbe

@ -2,6 +2,8 @@
message(STATUS "CMake version: ${CMAKE_VERSION}") message(STATUS "CMake version: ${CMAKE_VERSION}")
cmake_minimum_required(VERSION 3.1) cmake_minimum_required(VERSION 3.1)
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
# Set the project name # Set the project name
set(PNAME Mandlebrot) set(PNAME Mandlebrot)
project(${PNAME}) project(${PNAME})
@ -17,18 +19,78 @@ set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR})
find_package(SFML 2.1 COMPONENTS ${SFML_COMPONENTS} REQUIRED) find_package(SFML 2.1 COMPONENTS ${SFML_COMPONENTS} REQUIRED)
message(STATUS "SFML found: ${SFML_FOUND}") message(STATUS "SFML found: ${SFML_FOUND}")
# Include the directories for SFML's headers # Find OpenCL
find_package( OpenCL REQUIRED )
message(STATUS "OpenCL found: ${OPENCL_FOUND}")
# Find OpenGL
find_package( OpenGL REQUIRED)
message(STATUS "OpenGL found: ${OPENGL_FOUND}")
# Include the directories for the main program, GL, CL and SFML's headers
include_directories(${SFML_INCLUDE_DIR}) include_directories(${SFML_INCLUDE_DIR})
include_directories(${OpenCL_INCLUDE_DIRS})
include_directories(include) include_directories(include)
# Glob all thr sources into their values # Glob all thr sources into their values
file(GLOB_RECURSE SOURCES "src/*.cpp") file(GLOB_RECURSE SOURCES "src/*.cpp")
file(GLOB_RECURSE HEADERS "include/*.h" "include/*.hpp") file(GLOB_RECURSE HEADERS "include/*.h" "include/*.hpp")
file(GLOB_RECURSE KERNELS "kernels/*.cl")
add_executable(${PNAME} ${SOURCES} ${HEADERS} ${KERNELS})
# Follow the sub directory structure to add sub-filters in VS
# Gotta do it one by one unfortunately
foreach (source IN ITEMS ${SOURCES})
if (IS_ABSOLUTE "${source}")
get_filename_component(filename ${source} DIRECTORY)
STRING(REGEX REPLACE "/" "\\\\" filename ${filename})
string(REGEX MATCHALL "src(.*)" substrings ${filename})
list(GET substrings 0 substring)
SOURCE_GROUP(${substring} FILES ${source})
endif()
endforeach()
foreach (source IN ITEMS ${HEADERS})
if (IS_ABSOLUTE "${source}")
get_filename_component(filename ${source} DIRECTORY)
STRING(REGEX REPLACE "/" "\\\\" filename ${filename})
string(REGEX MATCHALL "include(.*)" substrings ${filename})
list(GET substrings 0 substring)
SOURCE_GROUP(${substring} FILES ${source})
endif()
endforeach()
foreach (source IN ITEMS ${KERNELS})
if (IS_ABSOLUTE "${source}")
get_filename_component(filename ${source} DIRECTORY)
add_executable(${PNAME} ${SOURCES} ${HEADERS}) STRING(REGEX REPLACE "/" "\\\\" filename ${filename})
string(REGEX MATCHALL "kernels(.*)" substrings ${filename})
list(GET substrings 0 substring)
SOURCE_GROUP(${substring} FILES ${source})
endif()
endforeach()
# Link CL, GL, and SFML # Link CL, GL, and SFML
target_link_libraries (${PNAME} ${SFML_LIBRARIES} ${SFML_DEPENDENCIES}) target_link_libraries (${PNAME} ${SFML_LIBRARIES} ${SFML_DEPENDENCIES})
target_link_libraries (${PNAME} ${OpenCL_LIBRARY})
target_link_libraries (${PNAME} ${OPENGL_LIBRARIES})
if (NOT WIN32) if (NOT WIN32)
target_link_libraries (${PNAME} -lpthread) target_link_libraries (${PNAME} -lpthread)

@ -0,0 +1,112 @@
#pragma once
#ifdef linux
#include <CL/cl.h>
#include <CL/opencl.h>
#elif defined _WIN32
#define CL_USE_DEPRECATED_OPENCL_1_2_APIS
#include <CL/cl_gl.h>
#include <CL/cl.h>
#include <CL/opencl.h>
// Note: windows.h must be included before Gl/GL.h
#include <windows.h>
#include <GL/GL.h>
#elif defined TARGET_OS_MAC
#include <OpenCL/opencl.h>
#endif
#include <string>
#include <SFML/Graphics.hpp>
#include <unordered_map>
#include <iostream>
struct device {
cl_device_id id;
cl_device_type type;
cl_uint clock_frequency;
char version[128];
cl_platform_id platform;
cl_uint comp_units;
char extensions[1024];
char name[256];
cl_bool is_little_endian = false;
bool cl_gl_sharing = false;
};
class OpenCL {
public:
OpenCL(sf::Vector2i resolution);
~OpenCL();
bool init();
void run_kernel(std::string kernel_name);
void draw(sf::RenderWindow *window);
private:
int error = 0;
// Sprite and texture that is shared between CL and GL
sf::Sprite viewport_sprite;
sf::Texture viewport_texture;
sf::Vector2i viewport_resolution;
// The device which we have selected according to certain criteria
cl_platform_id platform_id;
cl_device_id device_id;
// The GL shared context and its subsiquently generated command queue
cl_context context;
cl_command_queue command_queue;
// Maps which contain a mapping from "name" to the host side CL memory object
std::unordered_map<std::string, cl_kernel> kernel_map;
std::unordered_map<std::string, cl_mem> buffer_map;
// Query the hardware on this machine and select the best device and the platform on which it resides
void aquire_hardware();
// After aquiring hardware, create a shared context using platform specific CL commands
void create_shared_context();
// Command queues must be created with a valid context
void create_command_queue();
// Compile the kernel and store it in the kernel map with the name as the key
bool compile_kernel(std::string kernel_path, std::string kernel_name);
// Buffer operations
// All of these functions create and store a buffer in a map with the key representing their name
// Create an image buffer from an SF texture. Access Type is the read/write specifier required by OpenCL
int create_image_buffer(std::string buffer_name, cl_uint size, sf::Texture* texture, cl_int access_type);
// Create a buffer with CL_MEM_READ_ONLY and CL_MEM_COPY_HOST_PTR
int create_buffer(std::string buffer_name, cl_uint size, void* data);
// Create a buffer with user defined data access flags
int create_buffer(std::string buffer_name, cl_uint size, void* data, cl_mem_flags flags);
// Store a cl_mem object in the buffer map <string:name, cl_mem:buffer>
int store_buffer(cl_mem buffer, std::string buffer_name);
// Using CL release the memory object and remove the KVP associated with the buffer name
int release_buffer(std::string buffer_name);
void assign_kernel_args();
int set_kernel_arg(std::string kernel_name, int index, std::string buffer_name);
bool vr_assert(int error_code, std::string function_name);
};

@ -97,32 +97,6 @@ private:
int vertex_position = 0; int vertex_position = 0;
}; };
struct debug_text {
public:
debug_text(int slot, int pixel_spacing, void* data_, std::string prefix_) : data(data_), prefix(prefix_) {
if (!f.loadFromFile("../assets/fonts/Arial.ttf")) {
std::cout << "couldn't find the fall back Arial font in ../assets/fonts/" << std::endl;
}
else {
t.setFont(f);
t.setCharacterSize(20);
t.setPosition(static_cast<float>(20), static_cast<float>(slot * pixel_spacing));
}
}
void draw(sf::RenderWindow *r) {
t.setString(prefix + std::to_string(*(float*)data));
r->draw(t);
}
private:
void* data;
std::string prefix;
sf::Font f;
sf::Text t;
};
inline sf::Vector3f SphereToCart(sf::Vector2f i) { inline sf::Vector3f SphereToCart(sf::Vector2f i) {
@ -169,7 +143,6 @@ inline sf::Vector3f FixOrigin(sf::Vector3f base, sf::Vector3f head) {
return head - base; return head - base;
} }
inline sf::Vector3f Normalize(sf::Vector3f in) { inline sf::Vector3f Normalize(sf::Vector3f in) {
float multiplier = sqrt(in.x * in.x + in.y * in.y + in.z * in.z); float multiplier = sqrt(in.x * in.x + in.y * in.y + in.z * in.z);
@ -182,7 +155,6 @@ inline sf::Vector3f Normalize(sf::Vector3f in) {
} }
inline float DotProduct(sf::Vector3f a, sf::Vector3f b){ inline float DotProduct(sf::Vector3f a, sf::Vector3f b){
return a.x * b.x + a.y * b.y + a.z * b.z; return a.x * b.x + a.y * b.y + a.z * b.z;
} }
@ -252,61 +224,6 @@ inline void DumpLog(std::stringstream* ss, std::string file_name) {
} }
inline std::string sfml_get_input(sf::RenderWindow *window) {
std::stringstream ss;
sf::Event event;
while (window->pollEvent(event)) {
if (event.type == sf::Event::TextEntered) {
ss << event.text.unicode;
}
else if (event.type == sf::Event::KeyPressed) {
if (event.key.code == sf::Keyboard::Return) {
return ss.str();
}
}
}
}
inline std::vector<float> sfml_get_float_input(sf::RenderWindow *window) {
std::stringstream ss;
sf::Event event;
while (true) {
if (window->pollEvent(event)) {
if (event.type == sf::Event::TextEntered) {
if (event.text.unicode > 47 && event.text.unicode < 58 || event.text.unicode == 32)
ss << static_cast<char>(event.text.unicode);
}
else if (event.type == sf::Event::KeyPressed) {
if (event.key.code == sf::Keyboard::Return) {
break;
}
}
}
}
std::istream_iterator<std::string> begin(ss);
std::istream_iterator<std::string> end;
std::vector<std::string> vstrings(begin, end);
std::vector<float> ret;
for (auto i: vstrings) {
ret.push_back(std::stof(i));
}
return ret;
}
inline int count_bits(int32_t v) { inline int count_bits(int32_t v) {
v = v - ((v >> 1) & 0x55555555); // reuse input as temporary v = v - ((v >> 1) & 0x55555555); // reuse input as temporary

@ -0,0 +1,39 @@
float scale(float valueIn, float origMin, float origMax, float scaledMin, float scaledMax) {
return ((scaledMax - scaledMin) * (valueIn - origMin) / (origMax - origMin)) + scaledMin;
}
__kernel void mandlebrot (
global int2* image_res,
__write_only image2d_t image,
global float4* range
){
size_t x_pixel = get_global_id(0);
size_t y_pixel = get_global_id(1);
int2 pixel = (int2)(x_pixel, y_pixel);
float x0 = scale(x_pixel, 0, (*image_res).x, (*range).x, (*range).y);
float y0 = scale(y_pixel, 0, (*image_res).y, (*range).z, (*range).w);
float x = 0.0;
float y = 0.0;
int iteration_count = 0;
int interation_threshold = 1000;
while (x*x + y*y < 4 && iteration_count < interation_threshold) {
float x_temp = x*x - y*y + x0;
y = 2 * x * y + y0;
x = x_temp;
iteration_count++;
}
int val = scale(iteration_count, 0, 1000, 0, 16777216);
write_imagef(image, pixel, (float4)(val & 0xff, (val >> 8) & 0xff, (val >> 16) & 0xff, 200));
return;
}

@ -0,0 +1,669 @@
#include <OpenCL.h>
#include "util.hpp"
void OpenCL::run_kernel(std::string kernel_name) {
size_t global_work_size[2] = { static_cast<size_t>(viewport_resolution.x), static_cast<size_t>(viewport_resolution.y) };
cl_kernel kernel = kernel_map.at(kernel_name);
error = clEnqueueAcquireGLObjects(command_queue, 1, &buffer_map.at("viewport_image"), 0, 0, 0);
if (vr_assert(error, "clEnqueueAcquireGLObjects"))
return;
//error = clEnqueueTask(command_queue, kernel, 0, NULL, NULL);
error = clEnqueueNDRangeKernel(
command_queue, kernel,
2, NULL, global_work_size,
NULL, 0, NULL, NULL);
if (vr_assert(error, "clEnqueueNDRangeKernel"))
return;
clFinish(command_queue);
// What if errors out and gl objects are never released?
error = clEnqueueReleaseGLObjects(command_queue, 1, &buffer_map.at("viewport_image"), 0, NULL, NULL);
if (vr_assert(error, "clEnqueueReleaseGLObjects"))
return;
}
void OpenCL::draw(sf::RenderWindow *window) {
window->draw(viewport_sprite);
}
void OpenCL::aquire_hardware() {
// Get the number of platforms
cl_uint plt_cnt = 0;
clGetPlatformIDs(0, nullptr, &plt_cnt);
// Fetch the platforms
std::map<cl_platform_id, std::vector<device>> plt_ids;
// buffer before map init
std::vector<cl_platform_id> plt_buf(plt_cnt);
clGetPlatformIDs(plt_cnt, plt_buf.data(), nullptr);
// Map init
for (auto id : plt_buf) {
plt_ids.emplace(std::make_pair(id, std::vector<device>()));
}
// For each platform, populate its devices
for (unsigned int i = 0; i < plt_cnt; i++) {
cl_uint deviceIdCount = 0;
error = clGetDeviceIDs(plt_buf[i], CL_DEVICE_TYPE_ALL, 0, nullptr, &deviceIdCount);
// Check to see if we even have OpenCL on this machine
if (deviceIdCount == 0) {
std::cout << "There appears to be no devices, or none at least supporting OpenCL" << std::endl;
return;
}
// Get the device ids
std::vector<cl_device_id> deviceIds(deviceIdCount);
error = clGetDeviceIDs(plt_buf[i], CL_DEVICE_TYPE_ALL, deviceIdCount, deviceIds.data(), NULL);
if (vr_assert(error, "clGetDeviceIDs"))
return;
for (unsigned int q = 0; q < deviceIdCount; q++) {
device d;
d.id = deviceIds[q];
clGetDeviceInfo(d.id, CL_DEVICE_PLATFORM, sizeof(cl_platform_id), &d.platform, NULL);
clGetDeviceInfo(d.id, CL_DEVICE_VERSION, sizeof(char) * 128, &d.version, NULL);
clGetDeviceInfo(d.id, CL_DEVICE_TYPE, sizeof(cl_device_type), &d.type, NULL);
clGetDeviceInfo(d.id, CL_DEVICE_MAX_CLOCK_FREQUENCY, sizeof(cl_uint), &d.clock_frequency, NULL);
clGetDeviceInfo(d.id, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(cl_uint), &d.comp_units, NULL);
clGetDeviceInfo(d.id, CL_DEVICE_EXTENSIONS, 1024, &d.extensions, NULL);
clGetDeviceInfo(d.id, CL_DEVICE_NAME, 256, &d.name, NULL);
clGetDeviceInfo(d.id, CL_DEVICE_ENDIAN_LITTLE, sizeof(cl_bool), &d.is_little_endian, NULL);
std::cout << "Device: " << q << std::endl;
std::cout << "Device Name : " << d.name << std::endl;
std::cout << "Platform ID : " << d.platform << std::endl;
std::cout << "Device Version : " << d.version << std::endl;
std::cout << "Device Type : ";
if (d.type == CL_DEVICE_TYPE_CPU)
std::cout << "CPU" << std::endl;
else if (d.type == CL_DEVICE_TYPE_GPU)
std::cout << "GPU" << std::endl;
else if (d.type == CL_DEVICE_TYPE_ACCELERATOR)
std::cout << "Accelerator" << std::endl;
std::cout << "Max clock frequency : " << d.clock_frequency << std::endl;
std::cout << "Max compute units : " << d.comp_units << std::endl;
std::cout << "Is little endian : " << std::boolalpha << static_cast<bool>(d.is_little_endian) << std::endl;
std::cout << "cl_khr_gl_sharing supported: ";
if (std::string(d.extensions).find("cl_khr_gl_sharing") == std::string::npos &&
std::string(d.extensions).find("cl_APPLE_gl_sharing") == std::string::npos) {
std::cout << "False" << std::endl;
}
std::cout << "True" << std::endl;
d.cl_gl_sharing = true;
std::cout << "Extensions supported: " << std::endl;
std::cout << std::string(d.extensions) << std::endl;
std::cout << " ===================================================================================== " << std::endl;
plt_ids.at(d.platform).push_back(d);
}
}
// The devices how now been queried we want to shoot for a gpu with the fastest clock,
// falling back to the cpu with the fastest clock if we weren't able to find one
device current_best_device;
current_best_device.type = 0; // Set this to 0 so the first run always selects a new device
current_best_device.clock_frequency = 0;
current_best_device.comp_units = 0;
for (auto kvp : plt_ids) {
for (auto device : kvp.second) {
// Gonna just split this up into cases. There are so many devices I cant test with
// that opencl supports. I'm not going to waste my time making a generic implimentation
// Upon success of a condition, set the current best device values
//if (strcmp(device.version, "OpenCL 1.2 ") == 0 && strcmp(device.version, current_best_device.version) != 0) {
// current_best_device = device;
//}
// If the current device is not a GPU and we are comparing it to a GPU
if (device.type == CL_DEVICE_TYPE_GPU && current_best_device.type != CL_DEVICE_TYPE_GPU) {
current_best_device = device;
}
//if (device.type == CL_DEVICE_TYPE_CPU &&
// current_best_device.type != CL_DEVICE_TYPE_CPU) {
// current_best_device = device;
//}
// Get the unit with the higher compute units
if (device.comp_units > current_best_device.comp_units) {
current_best_device = device;
}
// If we are comparing CPU to CPU get the one with the best clock
if (current_best_device.type != CL_DEVICE_TYPE_GPU && device.clock_frequency > current_best_device.clock_frequency) {
current_best_device = device;
}
if (current_best_device.cl_gl_sharing == false && device.cl_gl_sharing == true) {
current_best_device = device;
}
}
}
platform_id = current_best_device.platform;
device_id = current_best_device.id;
std::cout << std::endl;
std::cout << "Selected Platform : " << platform_id << std::endl;
std::cout << "Selected Device : " << device_id << std::endl;
std::cout << "Selected Name : " << current_best_device.name << std::endl;
std::cout << "Selected Version : " << current_best_device.version << std::endl;
if (current_best_device.cl_gl_sharing == false) {
std::cout << "This device does not support the cl_khr_gl_sharing extension" << std::endl;
return;
}
}
void OpenCL::create_shared_context() {
// Hurray for standards!
// Setup the context properties to grab the current GL context
#ifdef linux
cl_context_properties context_properties[] = {
CL_GL_CONTEXT_KHR, (cl_context_properties)glXGetCurrentContext(),
CL_GLX_DISPLAY_KHR, (cl_context_properties)glXGetCurrentDisplay(),
CL_CONTEXT_PLATFORM, (cl_context_properties)platform_id,
0
};
#elif defined _WIN32
HGLRC hGLRC = wglGetCurrentContext();
HDC hDC = wglGetCurrentDC();
cl_context_properties context_properties[] = {
CL_CONTEXT_PLATFORM, (cl_context_properties)platform_id,
CL_GL_CONTEXT_KHR, (cl_context_properties)hGLRC,
CL_WGL_HDC_KHR, (cl_context_properties)hDC,
0
};
#elif defined TARGET_OS_MAC
CGLContextObj glContext = CGLGetCurrentContext();
CGLShareGroupObj shareGroup = CGLGetShareGroup(glContext);
cl_context_properties context_properties[] = {
CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE,
(cl_context_properties)shareGroup,
0
};
#endif
// Create our shared context
context = clCreateContext(
context_properties,
1,
&device_id,
nullptr, nullptr,
&error
);
if (vr_assert(error, "clCreateContext"))
return;
}
void OpenCL::create_command_queue() {
// If context and device_id have initialized
if (context && device_id) {
command_queue = clCreateCommandQueue(context, device_id, 0, &error);
if (vr_assert(error, "clCreateCommandQueue"))
return;
return;
}
else {
std::cout << "Failed creating the command queue. Context or device_id not initialized";
return;
}
}
bool OpenCL::compile_kernel(std::string kernel_path, std::string kernel_name) {
const char* source;
std::string tmp;
//Load in the kernel, and c stringify it
tmp = read_file(kernel_path);
source = tmp.c_str();
size_t kernel_source_size = strlen(source);
// Load the source into CL's data structure
cl_program program = clCreateProgramWithSource(
context, 1,
&source,
&kernel_source_size, &error
);
// This is not for compilation, it only loads the source
if (vr_assert(error, "clCreateProgramWithSource"))
return false;
// Try and build the program
// "-cl-finite-math-only -cl-fast-relaxed-math -cl-unsafe-math-optimizations"
error = clBuildProgram(program, 1, &device_id, "-cl-finite-math-only -cl-fast-relaxed-math -cl-unsafe-math-optimizations", NULL, NULL);
// Check to see if it errored out
if (vr_assert(error, "clBuildProgram")) {
// Get the size of the queued log
size_t log_size;
clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
char *log = new char[log_size];
// Grab the log
clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, log_size, log, NULL);
std::cout << log;
return false;
}
// Done initializing the kernel
cl_kernel kernel = clCreateKernel(program, kernel_name.c_str(), &error);
if (vr_assert(error, "clCreateKernel"))
return false;
// Do I want these to overlap when repeated??
kernel_map[kernel_name] = kernel;
return true;
}
int OpenCL::create_image_buffer(std::string buffer_name, cl_uint size, sf::Texture* texture, cl_int access_type) {
if (buffer_map.count(buffer_name) > 0) {
release_buffer(buffer_name);
}
int error;
cl_mem buff = clCreateFromGLTexture(
context, access_type, GL_TEXTURE_2D,
0, texture->getNativeHandle(), &error);
if (vr_assert(error, "clCreateFromGLTexture"))
return 1;
store_buffer(buff, buffer_name);
return 1;
}
int OpenCL::create_buffer(std::string buffer_name, cl_uint size, void* data) {
if (buffer_map.count(buffer_name) > 0) {
release_buffer(buffer_name);
}
cl_mem buff = clCreateBuffer(
context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
size, data, &error
);
if (vr_assert(error, "clCreateBuffer"))
return -1;
store_buffer(buff, buffer_name);
return 1;
}
int OpenCL::create_buffer(std::string buffer_name, cl_uint size, void* data, cl_mem_flags flags) {
if (buffer_map.count(buffer_name) > 0) {
release_buffer(buffer_name);
}
cl_mem buff = clCreateBuffer(
context, flags,
size, data, &error
);
if (vr_assert(error, "clCreateBuffer"))
return -1;
store_buffer(buff, buffer_name);
return 1;
}
int OpenCL::store_buffer(cl_mem buffer, std::string buffer_name) {
if (buffer_map.count(buffer_name)) {
clReleaseMemObject(buffer_map[buffer_name]);
}
buffer_map[buffer_name] = buffer;
return 1;
}
int OpenCL::release_buffer(std::string buffer_name) {
if (buffer_map.count(buffer_name) > 0) {
int error = clReleaseMemObject(buffer_map.at(buffer_name));
if (vr_assert(error, "clReleaseMemObject")) {
std::cout << "Error releasing buffer : " << buffer_name;
std::cout << "Buffer not removed";
return -1;
}
else {
buffer_map.erase(buffer_name);
}
}
else {
std::cout << "Error releasing buffer : " << buffer_name;
std::cout << "Buffer not found";
return -1;
}
return 1;
}
void OpenCL::assign_kernel_args() {
}
int OpenCL::set_kernel_arg(std::string kernel_name, int index, std::string buffer_name) {
error = clSetKernelArg(
kernel_map.at(kernel_name),
index,
sizeof(cl_mem),
(void *)&buffer_map.at(buffer_name));
if (vr_assert(error, "clSetKernelArg")) {
std::cout << buffer_name << std::endl;
std::cout << buffer_map.at(buffer_name) << std::endl;
return -1;
}
return 1;
}
OpenCL::OpenCL(sf::Vector2i resolution) : viewport_resolution(resolution){
viewport_texture.create(viewport_resolution.x, viewport_resolution.y);
viewport_sprite.setTexture(viewport_texture);
}
OpenCL::~OpenCL() {
}
bool OpenCL::init() {
// Initialize opencl up to the point where we start assigning buffers
aquire_hardware();
create_shared_context();
create_command_queue();
while (!compile_kernel("../kernels/mandlebrot.cl", "mandlebrot")) {
std::cin.get();
}
create_image_buffer("viewport_image", viewport_texture.getSize().x * viewport_texture.getSize().x * 4 * sizeof(float), &viewport_texture, CL_MEM_WRITE_ONLY);
create_buffer("image_res", sizeof(sf::Vector2i), &viewport_resolution);
sf::Vector4i range(-1.0f, 1.0f, -1.0f, 1.0f);
create_buffer("range", sizeof(sf::Vector4i), &range);
set_kernel_arg("mandlebrot", 0, "image_res");
set_kernel_arg("mandlebrot", 1, "viewport_image");
set_kernel_arg("mandlebrot", 2, "range");
return true;
}
bool OpenCL::vr_assert(int error_code, std::string function_name) {
// Just gonna do a little jump table here, just error codes so who cares
std::string err_msg = "Error : ";
switch (error_code) {
case CL_SUCCESS:
return false;
case 1:
return false;
case CL_DEVICE_NOT_FOUND:
err_msg += "CL_DEVICE_NOT_FOUND";
break;
case CL_DEVICE_NOT_AVAILABLE:
err_msg = "CL_DEVICE_NOT_AVAILABLE";
break;
case CL_COMPILER_NOT_AVAILABLE:
err_msg = "CL_COMPILER_NOT_AVAILABLE";
break;
case CL_MEM_OBJECT_ALLOCATION_FAILURE:
err_msg = "CL_MEM_OBJECT_ALLOCATION_FAILURE";
break;
case CL_OUT_OF_RESOURCES:
err_msg = "CL_OUT_OF_RESOURCES";
break;
case CL_OUT_OF_HOST_MEMORY:
err_msg = "CL_OUT_OF_HOST_MEMORY";
break;
case CL_PROFILING_INFO_NOT_AVAILABLE:
err_msg = "CL_PROFILING_INFO_NOT_AVAILABLE";
break;
case CL_MEM_COPY_OVERLAP:
err_msg = "CL_MEM_COPY_OVERLAP";
break;
case CL_IMAGE_FORMAT_MISMATCH:
err_msg = "CL_IMAGE_FORMAT_MISMATCH";
break;
case CL_IMAGE_FORMAT_NOT_SUPPORTED:
err_msg = "CL_IMAGE_FORMAT_NOT_SUPPORTED";
break;
case CL_BUILD_PROGRAM_FAILURE:
err_msg = "CL_BUILD_PROGRAM_FAILURE";
break;
case CL_MAP_FAILURE:
err_msg = "CL_MAP_FAILURE";
break;
case CL_MISALIGNED_SUB_BUFFER_OFFSET:
err_msg = "CL_MISALIGNED_SUB_BUFFER_OFFSET";
break;
case CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST:
err_msg = "CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST";
break;
case CL_COMPILE_PROGRAM_FAILURE:
err_msg = "CL_COMPILE_PROGRAM_FAILURE";
break;
case CL_LINKER_NOT_AVAILABLE:
err_msg = "CL_LINKER_NOT_AVAILABLE";
break;
case CL_LINK_PROGRAM_FAILURE:
err_msg = "CL_LINK_PROGRAM_FAILURE";
break;
case CL_DEVICE_PARTITION_FAILED:
err_msg = "CL_DEVICE_PARTITION_FAILED";
break;
case CL_KERNEL_ARG_INFO_NOT_AVAILABLE:
err_msg = "CL_KERNEL_ARG_INFO_NOT_AVAILABLE";
break;
case CL_INVALID_VALUE:
err_msg = "CL_INVALID_VALUE";
break;
case CL_INVALID_DEVICE_TYPE:
err_msg = "CL_INVALID_DEVICE_TYPE";
break;
case CL_INVALID_PLATFORM:
err_msg = "CL_INVALID_PLATFORM";
break;
case CL_INVALID_DEVICE:
err_msg = "CL_INVALID_DEVICE";
break;
case CL_INVALID_CONTEXT:
err_msg = "CL_INVALID_CONTEXT";
break;
case CL_INVALID_QUEUE_PROPERTIES:
err_msg = "CL_INVALID_QUEUE_PROPERTIES";
break;
case CL_INVALID_COMMAND_QUEUE:
err_msg = "CL_INVALID_COMMAND_QUEUE";
break;
case CL_INVALID_HOST_PTR:
err_msg = "CL_INVALID_HOST_PTR";
break;
case CL_INVALID_MEM_OBJECT:
err_msg = "CL_INVALID_MEM_OBJECT";
break;
case CL_INVALID_IMAGE_FORMAT_DESCRIPTOR:
err_msg = "CL_INVALID_IMAGE_FORMAT_DESCRIPTOR";
break;
case CL_INVALID_IMAGE_SIZE:
err_msg = "CL_INVALID_IMAGE_SIZE";
break;
case CL_INVALID_SAMPLER:
err_msg = "CL_INVALID_SAMPLER";
break;
case CL_INVALID_BINARY:
err_msg = "CL_INVALID_BINARY";
break;
case CL_INVALID_BUILD_OPTIONS:
err_msg = "CL_INVALID_BUILD_OPTIONS";
break;
case CL_INVALID_PROGRAM:
err_msg = "CL_INVALID_PROGRAM";
break;
case CL_INVALID_PROGRAM_EXECUTABLE:
err_msg = "CL_INVALID_PROGRAM_EXECUTABLE";
break;
case CL_INVALID_KERNEL_NAME:
err_msg = "CL_INVALID_KERNEL_NAME";
break;
case CL_INVALID_KERNEL_DEFINITION:
err_msg = "CL_INVALID_KERNEL_DEFINITION";
break;
case CL_INVALID_KERNEL:
err_msg = "CL_INVALID_KERNEL";
break;
case CL_INVALID_ARG_INDEX:
err_msg = "CL_INVALID_ARG_INDEX";
break;
case CL_INVALID_ARG_VALUE:
err_msg = "CL_INVALID_ARG_VALUE";
break;
case CL_INVALID_ARG_SIZE:
err_msg = "CL_INVALID_ARG_SIZE";
break;
case CL_INVALID_KERNEL_ARGS:
err_msg = "CL_INVALID_KERNEL_ARGS";
break;
case CL_INVALID_WORK_DIMENSION:
err_msg = "CL_INVALID_WORK_DIMENSION";
break;
case CL_INVALID_WORK_GROUP_SIZE:
err_msg = "CL_INVALID_WORK_GROUP_SIZE";
break;
case CL_INVALID_WORK_ITEM_SIZE:
err_msg = "CL_INVALID_WORK_ITEM_SIZE";
break;
case CL_INVALID_GLOBAL_OFFSET:
err_msg = "CL_INVALID_GLOBAL_OFFSET";
break;
case CL_INVALID_EVENT_WAIT_LIST:
err_msg = "CL_INVALID_EVENT_WAIT_LIST";
break;
case CL_INVALID_EVENT:
err_msg = "CL_INVALID_EVENT";
break;
case CL_INVALID_OPERATION:
err_msg = "CL_INVALID_OPERATION";
break;
case CL_INVALID_GL_OBJECT:
err_msg = "CL_INVALID_GL_OBJECT";
break;
case CL_INVALID_BUFFER_SIZE:
err_msg = "CL_INVALID_BUFFER_SIZE";
break;
case CL_INVALID_MIP_LEVEL:
err_msg = "CL_INVALID_MIP_LEVEL";
break;
case CL_INVALID_GLOBAL_WORK_SIZE:
err_msg = "CL_INVALID_GLOBAL_WORK_SIZE";
break;
case CL_INVALID_PROPERTY:
err_msg = "CL_INVALID_PROPERTY";
break;
case CL_INVALID_IMAGE_DESCRIPTOR:
err_msg = "CL_INVALID_IMAGE_DESCRIPTOR";
break;
case CL_INVALID_COMPILER_OPTIONS:
err_msg = "CL_INVALID_COMPILER_OPTIONS";
break;
case CL_INVALID_LINKER_OPTIONS:
err_msg = "CL_INVALID_LINKER_OPTIONS";
break;
case CL_INVALID_DEVICE_PARTITION_COUNT:
err_msg = "CL_INVALID_DEVICE_PARTITION_COUNT";
break;
case CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR:
err_msg = "CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR";
break;
case CL_PLATFORM_NOT_FOUND_KHR:
err_msg = "CL_PLATFORM_NOT_FOUND_KHR";
break;
}
std::cout << err_msg << " =at= " << function_name << std::endl;
return true;
}

@ -6,6 +6,7 @@
#include "util.hpp" #include "util.hpp"
#include <thread> #include <thread>
#include <vector> #include <vector>
#include "OpenCL.h"
float elap_time() { float elap_time() {
static std::chrono::time_point<std::chrono::system_clock> start; static std::chrono::time_point<std::chrono::system_clock> start;
@ -43,15 +44,15 @@ void func(int id, int count, sf::Uint8* pixels) {
int iteration_count = 0; int iteration_count = 0;
int interation_threshold = 1000; int interation_threshold = 1000;
while (pow(x, 2) + pow(y, 2) < pow(2, 2) && iteration_count < interation_threshold) { while (x*x + y*y < 4 && iteration_count < interation_threshold) {
float x_temp = pow(x, 2) - pow(y, 2) + x0; float x_temp = x*x - y*y + x0;
y = 2 * x * y + y0; y = 2 * x * y + y0;
x = x_temp; x = x_temp;
iteration_count++; iteration_count++;
} }
sf::Color c(0, 0, scale(iteration_count, 0, 1000, 0, 255), 255); sf::Color c(0, 0, scale(iteration_count, 0, 1000, 0, 255), 255);
int val = scale(iteration_count, 0, 1000, 0, pow(2, 24)); int val = scale(iteration_count, 0, 1000, 0, 16777216);
pixels[(pixel_y * WINDOW_X + pixel_x) * 4 + 0] = val & 0xff; pixels[(pixel_y * WINDOW_X + pixel_x) * 4 + 0] = val & 0xff;
pixels[(pixel_y * WINDOW_X + pixel_x) * 4 + 1] = (val >> 8) & 0xff; pixels[(pixel_y * WINDOW_X + pixel_x) * 4 + 1] = (val >> 8) & 0xff;
@ -61,6 +62,8 @@ void func(int id, int count, sf::Uint8* pixels) {
} }
} }
enum Mouse_State {PRESSED, DEPRESSED};
int main() { int main() {
std::mt19937 rng(time(NULL)); std::mt19937 rng(time(NULL));
@ -69,13 +72,19 @@ int main() {
sf::RenderWindow window(sf::VideoMode(WINDOW_X, WINDOW_Y), "quick-sfml-template"); sf::RenderWindow window(sf::VideoMode(WINDOW_X, WINDOW_Y), "quick-sfml-template");
window.setFramerateLimit(60); window.setFramerateLimit(60);
float physic_step = 0.166f; float physic_step = 0.166f;
float physic_time = 0.0f; float physic_time = 0.0f;
double frame_time = 0.0, elapsed_time = 0.0, delta_time = 0.0, accumulator_time = 0.0, current_time = 0.0; double frame_time = 0.0, elapsed_time = 0.0, delta_time = 0.0, accumulator_time = 0.0, current_time = 0.0;
fps_counter fps; fps_counter fps;
OpenCL cl(sf::Vector2i(WINDOW_X, WINDOW_Y));
cl.init();
sf::Uint8 *pixels = new sf::Uint8[WINDOW_X * WINDOW_Y * 4]; sf::Uint8 *pixels = new sf::Uint8[WINDOW_X * WINDOW_Y * 4];
sf::Sprite viewport_sprite; sf::Sprite viewport_sprite;

Loading…
Cancel
Save