You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

347 lines
6.6 KiB

#include "Map.h"
// root
//
// a1
// a2
//
// b1
// b1
//
// c1
// c1
//
// a2
// a2
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
Map::Map(sf::Vector3i position) {
load_unload(position);
for (int i = 0; i < 1024; i++) {
block[i] = 0;
}
}
int BitCount(unsigned int u) {
unsigned int uCount;
uCount = u - ((u >> 1) & 033333333333) - ((u >> 2) & 011111111111);
return ((uCount + (uCount >> 3)) & 030707070707) % 63;
}
void SetBit(int position, char* c) {
*c |= 1 << position;
}
void FlipBit(int position, char* c) {
*c ^= 1 << position;
}
int GetBit(int position, char* c) {
return (*c >> position) & 1;
}
void SetBit(int position, int64_t* c) {
*c |= 1 << position;
}
void FlipBit(int position, int64_t* c) {
*c ^= 1 << position;
}
int GetBit(int position, int64_t* c) {
return (*c >> position) & 1;
}
struct leaf {
leaf *children;
char leaf_mask;
char valid_mask;
int level;
};
struct block {
int header = 0;
double* data = new double[1000];
};
int64_t generate_children_at_raw() {
int64_t t;
// count the raw data and insert via bit masks or whatever into the valid field
// Set the child pointer blank and the leaf mask blank as well
// Return the single value
return t;
}
int64_t Map::generate_children(sf::Vector3i pos, int dim) {
sf::Vector3i t1 = sf::Vector3i(pos.x, pos.y, pos.z);
sf::Vector3i t2 = sf::Vector3i(pos.x + dim, pos.y, pos.z);
sf::Vector3i t3 = sf::Vector3i(pos.x, pos.y + dim, pos.z);
sf::Vector3i t4 = sf::Vector3i(pos.x + dim, pos.y + dim, pos.z);
sf::Vector3i t5 = sf::Vector3i(pos.x, pos.y, pos.z + dim);
sf::Vector3i t6 = sf::Vector3i(pos.x + dim, pos.y, pos.z + dim);
sf::Vector3i t7 = sf::Vector3i(pos.x, pos.y + dim, pos.z + dim);
sf::Vector3i t8 = sf::Vector3i(pos.x + dim, pos.y + dim, pos.z + dim);
std::vector<int64_t> cps;
int64_t tmp = 0;
int64_t ret_pos = stack_position;
if (dim == 1) {
// These don't bound check, should they?
if (getVoxel(t1))
SetBit(16, &tmp);
if (getVoxel(t2))
SetBit(17, &tmp);
if (getVoxel(t3))
SetBit(18, &tmp);
if (getVoxel(t4))
SetBit(19, &tmp);
if (getVoxel(t5))
SetBit(20, &tmp);
if (getVoxel(t6))
SetBit(21, &tmp);
if (getVoxel(t7))
SetBit(22, &tmp);
if (getVoxel(t8))
SetBit(23, &tmp);
cps.push_back(tmp);
}
else {
// Generate all 8 sub trees accounting for each of their unique positions
int curr_stack_pos = stack_position;
tmp = generate_children(t1, dim / 2);
if (tmp != 0)
cps.push_back(tmp);
tmp = generate_children(t2, dim / 2);
if (tmp != 0)
cps.push_back(tmp);
tmp = generate_children(t3, dim / 2);
if (tmp != 0)
cps.push_back(tmp);
tmp = generate_children(t4, dim / 2);
if (tmp != 0)
cps.push_back(tmp);
tmp = generate_children(t5, dim / 2);
if (tmp != 0)
cps.push_back(tmp);
tmp = generate_children(t6, dim / 2);
if (tmp != 0)
cps.push_back(tmp);
tmp = generate_children(t7, dim / 2);
if (tmp != 0)
cps.push_back(tmp);
tmp = generate_children(t8, dim / 2);
if (tmp != 0)
cps.push_back(tmp);
}
memcpy(&block[stack_position], cps.data(), cps.size() * sizeof(int64_t));
stack_position += cps.size();
return 0;
}
void Map::generate_octree() {
char* arr[8192];
for (int i = 0; i < 8192; i++) {
arr[i] = 0;
}
generate_children(sf::Vector3i(0, 0, 0), 64);
int* dataset = new int[32 * 32 * 32];
for (int i = 0; i < 32 * 32 * 32; i++) {
dataset[0] = rand() % 2;
}
// levels defines how many levels to traverse before we hit raw data
// Will be the map width I presume. Will still need to handle how to swap in and out data.
// Possible have some upper static nodes that will stay full regardless of contents?
int levels = static_cast<int>(log2(64));
leaf top_node;
int t_level = -1;
int b_level = 0;
for (int i1 = 0; i1 < 2 * 2 * 2; i1++) {
int b_level = 1;
for (int i2 = 0; i2 < 2 * 2 * 2; i2++) {
int b_level = 2;
for (int i3 = 0; i3 < 2 * 2 * 2; i3++) {
int b_level = 3;
leaf l1;
l1.children = nullptr;
l1.leaf_mask = 0;
l1.valid_mask = 0;
for (int i = 0; i < 2 * 2 * 2; i++) {
//int x =
//if (dataset[]
}
}
}
}
std::list<int> parent_stack;
int byte_pos = 0;
unsigned int parent = 0;
for (int i = 0; i < 16; i++) {
parent ^= 1 << i;
}
unsigned int leafmask = 255;
unsigned int validmask = leafmask << 8;
parent &= validmask;
parent &= leafmask;
std::cout << BitCount(parent & leafmask);
unsigned int children[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
}
void Map::load_unload(sf::Vector3i world_position) {
sf::Vector3i chunk_pos(world_to_chunk(world_position));
//Don't forget the middle chunk
if (chunk_map.find(chunk_pos) == chunk_map.end()) {
chunk_map[chunk_pos] = Chunk(5);
}
for (int x = chunk_pos.x - chunk_radius / 2; x < chunk_pos.x + chunk_radius / 2; x++) {
for (int y = chunk_pos.y - chunk_radius / 2; y < chunk_pos.y + chunk_radius / 2; y++) {
for (int z = chunk_pos.z - chunk_radius / 2; z < chunk_pos.z + chunk_radius / 2; z++) {
if (chunk_map.find(sf::Vector3i(x, y, z)) == chunk_map.end()) {
chunk_map.emplace(sf::Vector3i(x, y, z), Chunk(rand() % 6));
//chunk_map[sf::Vector3i(x, y, z)] = Chunk(rand() % 6);
}
}
}
}
}
void Map::load_single(sf::Vector3i world_position) {
sf::Vector3i chunk_pos(world_to_chunk(world_position));
//Don't forget the middle chunk
if (chunk_map.find(chunk_pos) == chunk_map.end()) {
chunk_map[chunk_pos] = Chunk(0);
}
}
sf::Vector3i Map::getDimensions() {
return sf::Vector3i(0, 0, 0);
}
void Map::setVoxel(sf::Vector3i world_position, int val) {
load_single(world_position);
sf::Vector3i chunk_pos(world_to_chunk(world_position));
sf::Vector3i in_chunk_pos(
world_position.x % CHUNK_DIM,
world_position.y % CHUNK_DIM,
world_position.z % CHUNK_DIM
);
chunk_map.at(chunk_pos).voxel_data[in_chunk_pos.x + CHUNK_DIM * (in_chunk_pos.y + CHUNK_DIM * in_chunk_pos.z)]
= val;
}
char Map::getVoxel(sf::Vector3i pos){
return voxel_data[pos.x + OCT_DIM * (pos.y + OCT_DIM * pos.z)];
}
void Chunk::set(int type) {
for (int i = 0; i < CHUNK_DIM * CHUNK_DIM * CHUNK_DIM; i++) {
voxel_data[i] = 0;
}
for (int x = 0; x < CHUNK_DIM; x+=2) {
for (int y = 0; y < CHUNK_DIM; y+=2) {
//list[x + dim.x * (y + dim.z * z)]
voxel_data[x + CHUNK_DIM * (y + CHUNK_DIM * 1)] = type;
}
}
}