Hunting down some bugs and verfiying correct oct-tree traversal, not quite there yet but close

master
MitchellHansen 8 years ago
parent 5e222a0331
commit 30959128e4

@ -84,9 +84,10 @@ public:
uint8_t idx_set_y_mask = 0x2; uint8_t idx_set_y_mask = 0x2;
uint8_t idx_set_z_mask = 0x4; uint8_t idx_set_z_mask = 0x4;
// Mask for
uint8_t mask_8[8] = { uint8_t mask_8[8] = {
0x0, 0x1, 0x2, 0x3, 0x1, 0x2, 0x4, 0x8,
0x4, 0x5, 0x6, 0x7 0x10, 0x20, 0x40, 0x80
}; };
uint8_t count_mask_8[8]{ uint8_t count_mask_8[8]{
@ -98,29 +99,38 @@ public:
// the IDX and stack position of the highest resolution (maybe set resolution?) oct // the IDX and stack position of the highest resolution (maybe set resolution?) oct
bool get_voxel(sf::Vector3i position) { bool get_voxel(sf::Vector3i position) {
// Init the parent stack and push the head node // Init the parent stack
//std::queue<uint64_t> parent_stack;
int parent_stack_position = 0; int parent_stack_position = 0;
uint64_t parent_stack[32] = {0}; uint64_t parent_stack[32] = {0};
// and push the head node
uint64_t head = block_stack.front()[stack_pos]; uint64_t head = block_stack.front()[stack_pos];
parent_stack[parent_stack_position] = head; parent_stack[parent_stack_position] = head;
// Get the index of the first child of the head node // Get the index of the first child of the head node
uint64_t index = head & child_pointer_mask; uint64_t index = head & child_pointer_mask;
// Init the idx stack
uint8_t scale = 0; uint8_t scale = 0;
uint8_t idx_stack[32] = {0}; uint8_t idx_stack[32] = {0};
// Init the idx stack // Init the idx stack (DEBUG)
std::vector<std::bitset<3>> scale_stack(static_cast<uint64_t>(log2(OCT_DIM))); std::vector<std::bitset<3>> scale_stack(static_cast<uint64_t>(log2(OCT_DIM)));
// Set our initial dimension and the position we use to keep track what oct were in // Set our initial dimension and the position at the corner of the oct to keep track of our position
int dimension = OCT_DIM; int dimension = OCT_DIM;
sf::Vector3i quad_position(0, 0, 0); sf::Vector3i quad_position(0, 0, 0);
// While we are not at the required resolution
// Traverse down by setting the valid/leaf mask to the subvoxel
// Check to see if it is valid
// Yes?
// Check to see if it is a leaf
// No? Break
// Yes? Scale down to the next hierarchy, push the parent to the stack
//
// No?
// Break
while (dimension > 1) { while (dimension > 1) {
// So we can be a little bit tricky here and increment our // So we can be a little bit tricky here and increment our
@ -164,6 +174,9 @@ public:
scale_stack.at(static_cast<uint64_t>(log2(OCT_DIM) - log2(dimension))).set(2); scale_stack.at(static_cast<uint64_t>(log2(OCT_DIM) - log2(dimension))).set(2);
} }
uint64_t out1 = (head >> 16) & mask_8[mask_index];
uint64_t out2 = (head >> 24) & mask_8[mask_index];
// Check to see if we are on a valid oct // Check to see if we are on a valid oct
if ((head >> 16) & mask_8[mask_index]) { if ((head >> 16) & mask_8[mask_index]) {
@ -171,6 +184,7 @@ public:
if ((head >> 24) & mask_8[mask_index]) { if ((head >> 24) & mask_8[mask_index]) {
// If it is, then we cannot traverse further as CP's won't have been generated // If it is, then we cannot traverse further as CP's won't have been generated
return true;
break; break;
} }
@ -180,9 +194,13 @@ public:
// We also need to traverse to the correct child pointer // We also need to traverse to the correct child pointer
// Count the number of non-leaf octs that come before and add it to the current parent stack position // Count the number of non-leaf octs that come before and add it to the index to get the position
int count = count_bits((uint8_t)(head >> 24) ^ count_mask_8[mask_index]); int count = count_bits((uint8_t)(head >> 24) ^ count_mask_8[mask_index]);
int index = static_cast<int>((parent_stack[parent_stack_position] & child_pointer_mask) + count);
// Because we are getting the position at the first child we need to back up one
// Or maybe it's because my count bits function is wrong...
index = (head & child_pointer_mask) + count - 1;
head = block_stack.front()[index];
// Increment the parent stack position and put the new oct node as the parent // Increment the parent stack position and put the new oct node as the parent
parent_stack_position++; parent_stack_position++;
@ -196,6 +214,7 @@ public:
// to focus on how to now take care of the end condition. // to focus on how to now take care of the end condition.
// Currently it adds the last parent on the second to lowest // Currently it adds the last parent on the second to lowest
// oct CP. Not sure if thats correct // oct CP. Not sure if thats correct
return false;
break; break;
} }
} }
@ -226,9 +245,6 @@ private:
const uint64_t contour_pointer_mask = 0xFFFFFF00000000; const uint64_t contour_pointer_mask = 0xFFFFFF00000000;
const uint64_t contour_mask = 0xFF00000000000000; const uint64_t contour_mask = 0xFF00000000000000;
}; };
@ -236,7 +252,7 @@ class Map {
public: public:
Map(sf::Vector3i dim); Map(sf::Vector3i position);
void generate_octree(); void generate_octree();
void load_unload(sf::Vector3i world_position); void load_unload(sf::Vector3i world_position);
@ -250,10 +266,12 @@ public:
char getVoxelFromOctree(sf::Vector3i position); char getVoxelFromOctree(sf::Vector3i position);
void moveLight(sf::Vector2f in); bool getVoxel(sf::Vector3i pos);
Octree a;
sf::Vector3f global_light; sf::Vector3f global_light;
Octree a; void test_map();
protected: protected:
@ -261,7 +279,7 @@ private:
// DEBUG // DEBUG
int counter = 0; int counter = 0;
std::stringstream ss; std::stringstream output_stream;
// !DEBUG // !DEBUG
@ -269,7 +287,6 @@ private:
uint64_t generate_children(sf::Vector3i pos, int dim); uint64_t generate_children(sf::Vector3i pos, int dim);
char getVoxel(sf::Vector3i pos);
char* voxel_data = new char[OCT_DIM * OCT_DIM * OCT_DIM]; char* voxel_data = new char[OCT_DIM * OCT_DIM * OCT_DIM];
//std::unordered_map<sf::Vector3i, Chunk, XYZHasher> chunk_map; //std::unordered_map<sf::Vector3i, Chunk, XYZHasher> chunk_map;

@ -38,6 +38,7 @@ struct device {
cl_uint comp_units; cl_uint comp_units;
char extensions[1024]; char extensions[1024];
char name[256]; char name[256];
cl_bool is_little_endian = false;
bool cl_gl_sharing = false; bool cl_gl_sharing = false;
}; };

@ -2,40 +2,9 @@
/* /*
OpenCL:
- Add phong lighting / fix the current implementation
- Switch to switch lighting models
- Separate out into a part of the rendering module
Map:
- Implement the new octree structure
- storing the pre-octree volumetric data
- determining when to load volumetric data into the in-memory structure
- building the octree from that raw volumetric data
- combining with other octree nodes to allow streaming of leafs
- passing that data into the renderer
- renderer needs to then traverse the octree
- Terrain generation for real this time
- Loader of 3rd party voxel data
Renderer:
- Determine when to switch between the cpu and gpu rendering
- call to the map to make sure that the gpu/cpu has an up to date copy
of the volumetric data
Build: Build:
Z:\Cpp_Libs\SFML-Visual_Studio2015RCx64 Z:\Cpp_Libs\SFML-2.4.2
Z:/Cpp_Libs/glew-2.0.0/lib/Release/x64/glew32s.lib Z:/Cpp_Libs/glew-2.0.0/lib/Release/x64/glew32s.lib
Z:/Cpp_Libs/glew-2.0.0/include Z:/Cpp_Libs/glew-2.0.0/include
*/ */

@ -1,7 +1,5 @@
#include "Map.h" #include "Map.h"
void SetBit(int position, char* c) { void SetBit(int position, char* c) {
*c |= (uint64_t)1 << position; *c |= (uint64_t)1 << position;
} }
@ -70,33 +68,38 @@ bool IsLeaf(const uint64_t descriptor) {
Map::Map(sf::Vector3i position) { Map::Map(sf::Vector3i position) {
srand(time(NULL));
load_unload(position); load_unload(position);
for (int i = 0; i < OCT_DIM * OCT_DIM * OCT_DIM; i++) { for (int i = 0; i < OCT_DIM * OCT_DIM * OCT_DIM; i++) {
if (rand() % 8 > 2) if (rand() % 2 == 1)
voxel_data[i] = 0; voxel_data[i] = 0;
else else
voxel_data[i] = 1; voxel_data[i] = 1;
} }
voxel_data[0 + OCT_DIM * (0 + OCT_DIM * 0)] = 1;
} }
uint64_t Map::generate_children(sf::Vector3i pos, int dim) { uint64_t Map::generate_children(sf::Vector3i pos, int voxel_scale) {
// The 8 subvoxel coords starting from the 1th direction, the direction of the origin of the 3d grid // The 8 subvoxel coords starting from the 1th direction, the direction of the origin of the 3d grid
// XY, Z++, XY // XY, Z++, XY
std::vector<sf::Vector3i> v = { std::vector<sf::Vector3i> v = {
sf::Vector3i(pos.x , pos.y , pos.z), sf::Vector3i(pos.x , pos.y , pos.z),
sf::Vector3i(pos.x + dim, pos.y , pos.z), sf::Vector3i(pos.x + voxel_scale, pos.y , pos.z),
sf::Vector3i(pos.x , pos.y + dim, pos.z), sf::Vector3i(pos.x , pos.y + voxel_scale, pos.z),
sf::Vector3i(pos.x + dim, pos.y + dim, pos.z), sf::Vector3i(pos.x + voxel_scale, pos.y + voxel_scale, pos.z),
sf::Vector3i(pos.x , pos.y , pos.z + dim), sf::Vector3i(pos.x , pos.y , pos.z + voxel_scale),
sf::Vector3i(pos.x + dim, pos.y , pos.z + dim), sf::Vector3i(pos.x + voxel_scale, pos.y , pos.z + voxel_scale),
sf::Vector3i(pos.x , pos.y + dim, pos.z + dim), sf::Vector3i(pos.x , pos.y + voxel_scale, pos.z + voxel_scale),
sf::Vector3i(pos.x + dim, pos.y + dim, pos.z + dim) sf::Vector3i(pos.x + voxel_scale, pos.y + voxel_scale, pos.z + voxel_scale)
}; };
if (dim == 1) { if (voxel_scale == 1) {
// Return the base 2x2 leaf node // Return the base 2x2 leaf node
uint64_t tmp = 0; uint64_t tmp = 0;
@ -126,10 +129,11 @@ uint64_t Map::generate_children(sf::Vector3i pos, int dim) {
for (int i = 0; i < v.size(); i++) { for (int i = 0; i < v.size(); i++) {
// Get the child descriptor from the i'th to 8th subvoxel // Get the child descriptor from the i'th to 8th subvoxel
child = generate_children(v.at(i), dim / 2); child = generate_children(v.at(i), voxel_scale / 2);
PrettyPrintUINT64(child, &ss); //
ss << " " << dim << " " << counter++ << std::endl; PrettyPrintUINT64(child, &output_stream);
output_stream << " " << voxel_scale << " " << counter++ << std::endl;
if (IsLeaf(child)) { if (IsLeaf(child)) {
if (CheckLeafSign(child)) if (CheckLeafSign(child))
@ -168,8 +172,8 @@ void Map::generate_octree() {
uint64_t root_node = generate_children(sf::Vector3i(0, 0, 0), OCT_DIM/2); uint64_t root_node = generate_children(sf::Vector3i(0, 0, 0), OCT_DIM/2);
uint64_t tmp = 0; uint64_t tmp = 0;
PrettyPrintUINT64(root_node, &ss); PrettyPrintUINT64(root_node, &output_stream);
ss << " " << OCT_DIM << " " << counter++ << std::endl; output_stream << " " << OCT_DIM << " " << counter++ << std::endl;
if (IsLeaf(root_node)) { if (IsLeaf(root_node)) {
if (CheckLeafSign(root_node)) if (CheckLeafSign(root_node))
@ -185,7 +189,7 @@ void Map::generate_octree() {
tmp |= a.copy_to_stack(std::vector<uint64_t>{root_node}); tmp |= a.copy_to_stack(std::vector<uint64_t>{root_node});
DumpLog(&ss, "raw_output.txt"); DumpLog(&output_stream, "raw_output.txt");
a.print_block(0); a.print_block(0);
@ -246,7 +250,35 @@ char Map::getVoxelFromOctree(sf::Vector3i position)
return a.get_voxel(position); return a.get_voxel(position);
} }
char Map::getVoxel(sf::Vector3i pos){ bool Map::getVoxel(sf::Vector3i pos){
if (voxel_data[pos.x + OCT_DIM * (pos.y + OCT_DIM * pos.z)]) {
return true;
} else {
return false;
}
}
void Map::test_map() {
for (int x = 0; x < OCT_DIM; x++) {
for (int y = 0; y < OCT_DIM; y++) {
for (int z = 0; z < OCT_DIM; z++) {
sf::Vector3i pos(x, y, z);
bool arr1 = getVoxel(pos);
bool arr2 = getVoxelFromOctree(pos);
if (arr1 != arr2) {
std::cout << "MISMATCH" << std::endl;
}
}
}
}
std::cout << "\nGOOD" << std::endl;
return voxel_data[pos.x + OCT_DIM * (pos.y + OCT_DIM * pos.z)];
} }

@ -93,10 +93,13 @@ int main() {
// ni.stop_listening_for_clients(); // ni.stop_listening_for_clients();
// ============================= // =============================
// Map _map(sf::Vector3i(0, 0, 0)); Map _map(sf::Vector3i(0, 0, 0));
// _map.generate_octree(); _map.generate_octree();
// _map.a.get_voxel(sf::Vector3i(5, 5, 0)); std::cout << _map.a.get_voxel(sf::Vector3i(5, 5, 0));
// return 0; std::cout << _map.getVoxel(sf::Vector3i(5, 5, 0));
_map.test_map();
std::cin.get();
return 0;
// ============================= // =============================
sf::RenderWindow window(sf::VideoMode(WINDOW_X, WINDOW_Y), "SFML"); sf::RenderWindow window(sf::VideoMode(WINDOW_X, WINDOW_Y), "SFML");

@ -11,7 +11,6 @@ Hardware_Caster::~Hardware_Caster() {
int Hardware_Caster::init() { int Hardware_Caster::init() {
// Initialize opencl up to the point where we start assigning buffers // Initialize opencl up to the point where we start assigning buffers
error = acquire_platform_and_device(); error = acquire_platform_and_device();
if(vr_assert(error, "aquire_platform_and_device")) if(vr_assert(error, "aquire_platform_and_device"))
return error; return error;
@ -316,6 +315,7 @@ int Hardware_Caster::acquire_platform_and_device() {
clGetDeviceInfo(d.id, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(cl_uint), &d.comp_units, NULL); clGetDeviceInfo(d.id, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(cl_uint), &d.comp_units, NULL);
clGetDeviceInfo(d.id, CL_DEVICE_EXTENSIONS, 1024, &d.extensions, NULL); clGetDeviceInfo(d.id, CL_DEVICE_EXTENSIONS, 1024, &d.extensions, NULL);
clGetDeviceInfo(d.id, CL_DEVICE_NAME, 256, &d.name, NULL); clGetDeviceInfo(d.id, CL_DEVICE_NAME, 256, &d.name, NULL);
clGetDeviceInfo(d.id, CL_DEVICE_ENDIAN_LITTLE, sizeof(cl_bool), &d.is_little_endian, NULL);
std::cout << "Device: " << q << std::endl; std::cout << "Device: " << q << std::endl;
std::cout << "Device Name : " << d.name << std::endl; std::cout << "Device Name : " << d.name << std::endl;
@ -335,6 +335,7 @@ int Hardware_Caster::acquire_platform_and_device() {
std::cout << "Max clock frequency : " << d.clock_frequency << std::endl; std::cout << "Max clock frequency : " << d.clock_frequency << std::endl;
std::cout << "Max compute units : " << d.comp_units << std::endl; std::cout << "Max compute units : " << d.comp_units << std::endl;
std::cout << "Is little endian : " << std::boolalpha << static_cast<bool>(d.is_little_endian) << std::endl;
std::cout << "cl_khr_gl_sharing supported: "; std::cout << "cl_khr_gl_sharing supported: ";
if (std::string(d.extensions).find("cl_khr_gl_sharing") == std::string::npos && if (std::string(d.extensions).find("cl_khr_gl_sharing") == std::string::npos &&

Loading…
Cancel
Save